ISSN 1000-3304CN 11-1857/O6

Citation: Fang Zhang, Hang-tian Zhang, Tian Yang, Bo Kong, An-ru Guo, Qi Zhang and Yi-xian Wu. Synthesis and Property of Novel Functionalized Polytetrahydrofuran-b-polyisobutylene-b-polytetrahydrofuran Triblock Copolymers[J]. Acta Polymerica Sinica, 2020, 51(1): 98-116. doi: 10.11777/j.issn1000-3304.2020.19151 shu

Synthesis and Property of Novel Functionalized Polytetrahydrofuran-b-polyisobutylene-b-polytetrahydrofuran Triblock Copolymers

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn

  • Received Date: 2019-08-10
    Accepted Date: 2019-09-09
    Available Online: 2020-01-01

Figures(21)

  • The functionalized polyisobutylenes (PIBs) carrying allyl-Br or allyl-NH2 with different molecular weights and narrow molecular weight distribution, could be successfully synthesized via controlled/living cationic polymerization of isobutylene (IB) in n-hexane/CH2Cl2 mixed solvents at −80 °C. Controlled/Living cationic ring-opening polymerization (ROP) of tetrahydrofuran (THF) was achieved with Allyl-Br/AgClO4 initiating system at 0 °C. Two kinds of novel functionalized PTHF-b-PIB-b-PTHF triblock copolymers were designed and synthesized via combination with controlled/living cationic polymerization of IB and controlled/living cationic ROP of THF. Terminal hydroxyl functionalized HO-PTHF-b-PIB-b-PTHF-OH triblock copolymers (expressed as FIBF-OH) were successfully synthesized by using the PIBs with difunctional allyl-Br terminal groups (Br-PIB-Br) as macroinitiators to initiate living cationic ROP of THF in the presence of AgClO4 to create living PTHF+-b-PIB-b-PTHF+ chains and then terminating by H2O molecules. On the other hand, PTHF-b-HN-PIB-NH-b-PTHF triblock copolymers containing hydrogen bonds at the connection point of PTHF and PIB segments (expressed as FIBF-NH) were also successfully synthesized via efficient nucleophilic substitution reaction between living PTHF+ chains and amine groups in H2N-PIB-NH2. Due to the dynamic incompatibility between polar PTHF segments and nonpolar PIB segments and the crystallization of PTHF segments, PTHF-b-PIB-b-PTHF triblock copolymers exhibit an obvious microphase separation micromorphology. It is recognized that the chemical structure in the PTHF-b-PIB-b-PTHF triblock copolymers makes a great contribution to the formation of hydrogen bonding and thus the supramolecular network. The crystallization of PTHF segments could be improved even in FIBF-NH with relatively short PTHF segments, e.g. Mn,PTHF = 0.7 kg·mol−1. FIBF-NH could be completely self-healing at 25 °C for 10 min after cutting on its surface. However, the cutting on FIBF-OH surface was difficult to heal even at 30 °C for 3 days. Moreover, the PTHF-b-PIB-b-PTHF triblock copolymers could be used as drug carrier by interactions between PTHF segment and drug. The drug carrier microspheres exhibit pH-sensitive drug-release rate in PBS with different pH values. The novel functionalized PTHF-b-PIB-b-PTHF triblock copolymers combined the respective good properties from PIB and PTHF segments would have their potential applications as biomedical and smart-healing functional materials.
  • 加载中
    1. [1]

      Campbell C G, Ummadisetty S, Storey R F. Macromolecules, 2016, 49: 7642 − 7652 doi: 10.1021/acs.macromol.6b01754

    2. [2]

      Wu Guanying(武冠英), Wu Yixian(吴一弦). Controlled Cationic Polymerization and its Application(控制阳离子聚合及其应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2005. 436

    3. [3]

      Kennedy J P, Macrechal E. Carbocationic polymerization. New York: John Wiley & Sons, 1982. 59

    4. [4]

      Faust R, Kennedy J P. Polym Bull, 1986, 15(4): 317 − 323

    5. [5]

      Bahadur M, Shaffer T D, Ashbaugh J R. Macromolecules, 2000, 33(26): 9548 − 9552 doi: 10.1021/ma000064u

    6. [6]

      Hadjikyriacou S, Acar M, Faust R. Macromolecules, 2004, 37(20): 7543 − 7547 doi: 10.1021/ma049082s

    7. [7]

      Qiu Y X, Wu Y X, Gu X L, Xu X, Wu G Y. Eur Polym J, 2005, 41: 349 − 358 doi: 10.1016/j.eurpolymj.2004.10.003

    8. [8]

      Xu X, Wu Y X, Qiu Y X, Dong C L, Wu G Y, Wang H. Eur Polym J, 2006, 42: 2791 − 2800 doi: 10.1016/j.eurpolymj.2006.06.028

    9. [9]

      Liu Xun(刘迅), Wu Yixian(吴一弦), Zhang Chenglong(张成龙), Zhang Bei(张蓓), Li Yan(李艳), Xu Xu(徐旭), Wu Guanying(武冠英). Acta Polymerica Sinica(高分子学报), 2007, (3): 255 − 261 doi: 10.3321/j.issn:1000-3304.2007.03.009

    10. [10]

      Li Y, Wu Y X, Xu X, Liang L H, Wu G Y. J Polym Sci, Part A: Polym Chem, 2007, 45(14): 3053 − 3061 doi: 10.1002/pola.22061

    11. [11]

      Qiu Yingxin(邱迎昕), Wu Yixian(吴一弦), Cui Yu(崔宇), Ye Xiaolin(叶晓林), Wu Guanying(武冠英). Acta Polymerica Sinica(高分子学报), 2007, (2): 190 − 197 doi: 10.3321/j.issn:1000-3304.2007.02.017

    12. [12]

      Zhang C L, Wu Y X, Xu X, Li Y, Feng L, Wu G Y. J Polym Sci, Part A: Polym Chem, 2008, 46: 936 − 946 doi: 10.1002/pola.22437

    13. [13]

      Lin Tao(林涛), Wu Yixian(吴一弦), Ye Xiaolin(叶晓林), Zhang Laibao(张来宝), Huang Qigu(黄启谷), Wu Guanying(武冠英). Acta Polymerica Sinica(高分子学报), 2008, (2): 129 − 135 doi: 10.3321/j.issn:1000-3304.2008.02.006

    14. [14]

      Liang Lihu(梁立虎), Wu Yixian(吴一弦), Li Yan(李艳), Xu Riwei(徐日炜), Yang Waitai(杨万泰), Wu Guanying (武冠英). Acta Polymerica Sinica(高分子学报), 2008, (12): 1166 − 1174 doi: 10.3321/j.issn:1000-3304.2008.12.008

    15. [15]

      Zhang C L, Wu Y X, Meng X Y, Huang Q, Wu G Y, Xu R W. Chinese J Polym Sci, 2009, 27(4): 551 − 559 doi: 10.1142/S0256767909004230

    16. [16]

      Zhang Bei(张蓓), Wu Yixian(吴一弦), Li Yan(李艳), Liu Xun(刘迅), Xu Xu(徐旭), Wu Guanying(武冠英). Acta Polymerica Sinica(高分子学报), 2009, (11): 1040 − 1046

    17. [17]

      Li Y, Wu Y X, Liang L H, Li Y, Wu G Y. Chinese J Polym Sci, 2010, 28(1): 55 − 62 doi: 10.1007/s10118-010-8216-9

    18. [18]

      Liu Q, Wu Y X, Zhang Y, Yan P F, Xu R W. Polymer, 2010, 51(25): 5960 − 5969 doi: 10.1016/j.polymer.2010.10.012

    19. [19]

      Vasilenko I V, Frolov A N, Kostjuk S V. Macromolecules, 2010, 43(13): 5503 − 5507 doi: 10.1021/ma1009275

    20. [20]

      Zhang L B, Wu Y X, Zhou P, Wu G Y, Yang W T, Yu D S. Chinese J Polym Sci, 2011, 29(3): 360 − 367 doi: 10.1007/s10118-011-1042-x

    21. [21]

      Liu Q, Wu Y X, Yan P F, Zhang Y, Xu R W. Macromolecules, 2011, 44: 1866 − 1875 doi: 10.1021/ma1027017

    22. [22]

      Yan P F, Guo A R, Liu Q, Wu Y X. J Polym Sci, Part A: Polym Chem, 2012, 50: 3383 − 3392 doi: 10.1002/pola.26126

    23. [23]

      Zhang L B, Wu Y X, Zhou P, Xu R W. Polym Adv Technol, 2012, 23: 522 − 528 doi: 10.1002/pat.1908

    24. [24]

      Kumar R, Dimitrov P, Bartelson K J, Emert J, Faust R. Macromolecules, 2012, 45(21): 8598 − 8603 doi: 10.1021/ma3017585

    25. [25]

      Bartelson K J, De P, Kumar R, Emert J, Faust R. Polymer, 2013, 54(18): 4858 − 4863 doi: 10.1016/j.polymer.2013.07.024

    26. [26]

      Guo A R, Yang X J, Yan P F, Wu Y X. J Polym Sci, Part A: Polym. Chem, 2013, 51: 4200 − 4212 doi: 10.1002/pola.26834

    27. [27]

      Kumar R, Zheng B, Huang, K W, Emert J, Faust R. Macromolecules, 2014, 47(6): 1959 − 1965 doi: 10.1021/ma500042f

    28. [28]

      Yang X J, Guo A R, Xu H C, Wu Y X. J Appl Polym Sci, 2015, 132: 42232 − 42244

    29. [29]

      Kostjuk S V, Vasilenko I V, Shiman D I, Frolov A N, Gaponik L V. Macromol Symp, 2015, 349(1): 94 − 103 doi: 10.1002/masy.201400016

    30. [30]

      Vasilenko I V, Berezianko I A, Shiman D I, Shiman D I, Kostjuk S V. Polym Chem, 2016, 7(36): 5615 − 5619 doi: 10.1039/C6PY01325B

    31. [31]

      Wu Yixian(吴一弦), Zhou Qi(周琦), Du Jie(杜杰), Wang Nan(王楠). Acta Polymerica Sinica(高分子学报), 2017, (7): 1047 − 1057 doi: 10.11777/j.issn1000-3304.2017.17045

    32. [32]

      Yang S X, Fan Z Y, Zhang F Y, Li S H, Wu Y X. Chinese J Polym Sci, 2019, 37: 919 − 929 doi: 10.1007/s10118-019-2329-6

    33. [33]

      De P, Faust R. Macromolecules, 2006, 39(22): 7527 − 7533 doi: 10.1021/ma061463d

    34. [34]

      Ojha U, Rajkhowa R, Agnihotra S R, Faust R. Macromolecules, 2008, 41(11): 3832 − 3841 doi: 10.1021/ma7027209

    35. [35]

      Deodhar T J, Keszler B L, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2017, 55(10): 1784 − 1789 doi: 10.1002/pola.28529

    36. [36]

      Nugay T, Deodhar T, Nugay N, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2018, 56(11): 1140 − 1145 doi: 10.1002/pola.28993

    37. [37]

      Sipos L, Som A, Rudolf Faust R. Biomacromolecules, 2005, 6: 2570 − 2582 doi: 10.1021/bm050299j

    38. [38]

      Bouchekif H, Som A, Sipos L, Faust R. J Macromol Sci, Part A: Pure Appl Chem, 2007, 44: 359 − 366 doi: 10.1080/10601320601187986

    39. [39]

      Kleinedler J J, Foley J D, Alexander J S, Roerig S C, Hebert V Y, Dugas T R. J Biomed Mater Res B, 2011, 99B(2): 266 − 275 doi: 10.1002/jbm.b.31894

    40. [40]

      McDermott M K, Kim C S, Saylor D M, Patwardhan D V. J Biomed Mater Res B, 2013, 101: 1191 − 1199 doi: 10.1002/jbm.b.32930

    41. [41]

      Fittipaldi M, Rodriguez L A, Damley-Strnad A, Grace L R. Mater Des, 2015, 86: 6 − 13 doi: 10.1016/j.matdes.2015.07.070

    42. [42]

      Toth K, Nugay N, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2016, 54(15): 2361 − 2369 doi: 10.1002/pola.28109

    43. [43]

      Moralesa B, Kaskarb O, Grace L R. Mater Today Commun, 2018, 17: 278 − 288 doi: 10.1016/j.mtcomm.2018.09.019

    44. [44]

      Wu Y B, Li K, Xiang D, Zhang M, Yang D, Zhang J H, Mao J, Wang H, Guo W L. Appl Surf Sci, 2018, 445: 8 − 15 doi: 10.1016/j.apsusc.2018.03.048

    45. [45]

      James G K, Robson F S, William L J, Kenneth A M. Polymer, 2008, 49: 5045 − 5052 doi: 10.1016/j.polymer.2008.08.045

    46. [46]

      Bonduelle C V, Karamdoust S, Gillies E R. Macromolecules, 2011, 44: 6405 − 6415 doi: 10.1021/ma2009996

    47. [47]

      Li S, He J L, Zhang M Z, Wang H R, Ni P H. Polym Chem, 2016, 7: 1773 − 1781 doi: 10.1039/C5PY02017D

    48. [48]

      Malins E L, Waterson C, Becer C R. RSC Adv, 2016, 6: 71773 − 71780 doi: 10.1039/C6RA15346A

    49. [49]

      Castano M, Alvarez1 A, Becker M L, Puskas J E. Express Polym Lett, 2016, 10(8): 693 − 700 doi: 10.3144/expresspolymlett.2016.62

    50. [50]

      Zhang H F, Banerjee S, Faust R, Hadjichristidis N. Polym Chem, 2016, 7: 1217 − 1220 doi: 10.1039/C5PY01892G

    51. [51]

      Askes S H C, Pomp W, Hopkins S L, Kros A, Wu S, Schmidt T, Bonnet S. Small, 2016, 12(40): 5579 − 5590 doi: 10.1002/smll.201601708

    52. [52]

      Askes S H C, Bossert N, Bussmann J, Talens V S, Meijer M S, Kieltyka R E, Kros A, Bonnet S, Heinrich D. Biomaterials, 2018, 168: 54 − 63 doi: 10.1016/j.biomaterials.2018.03.037

    53. [53]

      Campbell C G, Storey R F. Macromolecules, 2018, 51: 6430 − 6439 doi: 10.1021/acs.macromol.8b01258

    54. [54]

      Fu Y H, Madrahimov S T, Bergbreiter D E. J Polym Sci, Part A: Polym Chem, 2018, 56: 1860 − 1867 doi: 10.1002/pola.29069

    55. [55]

      Kerscher B, Trötschler T M, Pásztói B, Gröer S, Szabó A, Iván B, Mülhaupt R. Macromolecules, 2019, 52: 3306 − 3318 doi: 10.1021/acs.macromol.9b00296

    56. [56]

      Yang B, Abel B A, McCormick C L, Storey R F. Macromolecules, 2017, 50: 7458 − 7467 doi: 10.1021/acs.macromol.7b01655

    57. [57]

      Du Y Q, Li C M, Jin J, Li C, Jiang W. Colloids Surf B, 2018, 161: 73 − 82 doi: 10.1016/j.colsurfb.2017.10.035

    58. [58]

      Wei Mengjuan(魏梦娟), Guo Anru(郭安儒), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (3): 118 − 127

    59. [59]

      Wei Mengjuan(魏梦娟), Zhang Qi(章琦), Zhang Hangtian(张航天), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2018, (4): 464 − 474 doi: 10.11777/j.issn1000-3304.2017.17130

    60. [60]

      Gao Y Z, Chang T X, Wu Y X. Carbohyd Polym, 2019, 219: 201 − 209 doi: 10.1016/j.carbpol.2019.04.087

    61. [61]

      Theiler S, Diamantouros S E, Jockenhoevel S, Keul H, Moeller M. Polym Chem, 2011, 2(10): 2273 − 2283 doi: 10.1039/c1py00262g

    62. [62]

      Guo A R, Yang W X, Yang F, Yu R, Wu Y X. Macromolecules, 2014, 47(16): 5450 − 5461 doi: 10.1021/ma501060y

    63. [63]

      Jikei M, Aikawa Y, Matsumoto K. High Perform Polym, 2016, 28(9): 1015 − 1023 doi: 10.1177/0954008315613423

    64. [64]

      Meyer W, Engelhardt S, Novosel E, Elling B, Wegener M, Krüger H. J Funct Biomater, 2012, 3(2): 257 − 268 doi: 10.3390/jfb3020257

    65. [65]

      Cheng Liang(程亮), Li Jianda(李健达), Ma Jun(马骏), Su Junping(苏军平), Wei Shifeng(卫世锋), Liu Xu(刘旭). Guangzhou Chemical Industry(广州化工), 2018, 46(19): 114 − 115

    66. [66]

      Hourston D J, Williams G D, Satguru R, Padget J C, Pears D. J Appl Polym Sci, 1999, 74: 556 − 566 doi: 10.1002/(SICI)1097-4628(19991017)74:3<556::AID-APP10>3.0.CO;2-D

    67. [67]

      Rasolonjatovo B, Gomez J P, William M, Gonçalves C, Huin C, Bennevault-Celton V, Gall T L, Montier T, Lehn P, Cheradame H, Midoux P, Guégan P. Biomacromolecules, 2015, 16: 748 − 756 doi: 10.1021/bm5016656

    68. [68]

      Zhang Qi(章琦), Wei Mengjuan(魏梦娟), Deng Jinrui(邓金睿), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2018, (9): 70 − 79

    69. [69]

      Almeida A D, Nébouy M, Baeza G P. Macromolecules, 2019, 52(3): 1227 − 1240 doi: 10.1021/acs.macromol.8b01689

    70. [70]

      Jewrajka S K, Yilgor E, Yilgor I, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2009, 47(1): 38 − 48 doi: 10.1002/pola.23118

    71. [71]

      Jewrajka S K, Kang J, Erdodi G, Kennedy J P, Yilgor E, Yilgor I. J Polym Sci, Part A: Polym Chem, 2009, 47(11): 2787 − 2797 doi: 10.1002/pola.23361

    72. [72]

      Erdodi G, Kang J, Kennedy J P, Yilgor E, Yilgor I. J Polym Sci, Part A: Polym Chem, 2009, 47(20): 5278 − 5290 doi: 10.1002/pola.23577

    73. [73]

      Kang J, Erdodi G, Kennedy J P, Yilgor E, Yilgor I. J Polym Sci, Part A: Polym Chem, 2009, 47(22): 6180 − 6190 doi: 10.1002/pola.23661

    74. [74]

      Ojha U, Kulkarni P, Faust R. Polymer, 2009, 50(15): 3448 − 3457 doi: 10.1016/j.polymer.2009.05.025

    75. [75]

      Erdodi G, Kang J, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2010, 48(11): 2361 − 2371 doi: 10.1002/pola.24003

    76. [76]

      Cozzens D, Ojha U, KulkarniP, Faust R, Desai S. J Biomed Mater Res A, 2010, 95(3): 774 − 782 doi: 10.1002/jbm.a.32897

    77. [77]

      Ojha U, Faust R. J Biomed Mater Res A, 2010, 47(3): 186 − 191

    78. [78]

      Cozzens D, Ojha U, Kulkarni P, Faust R, Desai S. Abstr Papers Am Chem Soc, 2010, 51(2): 31 − 32

    79. [79]

      Kang J, Erdodi G, Brendel C M, Ely D, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2010, 48(10): 2194 − 2203 doi: 10.1002/pola.23989

    80. [80]

      Cozzens D, Luk A, Ojha U, Ruths M, Faust R. Langmuir, 2011, 27(23): 14160 − 14168 doi: 10.1021/la202586j

    81. [81]

      Wei X Y, Bagdi K, Ren L, Shah P, Seethamraju K, Faust R. Polymer, 2013, 54(6): 1647 − 1655 doi: 10.1016/j.polymer.2013.01.029

    82. [82]

      Kulkarni P, Ojha U, Wei X Y, Gurung N, Seethamraju K, Faust R. J Appl Polym Sci, 2013, 130(2): 891 − 897 doi: 10.1002/app.39236

    83. [83]

      Wei X Y, Shah P N, Bagdi K, Seethamraju K, Faust R. J Macromol Sci Part A: Pure Appl Chem, 2014, 51(1): 6 − 15 doi: 10.1080/10601325.2014.850617

    84. [84]

      Kang J, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2015, 53(1): 1 − 4 doi: 10.1002/pola.27447

    85. [85]

      Mishra A, Seethamraju K, Delaney J, Willoughby P, Faust R. J Biomed Mater Res A, 2015, 103(12): 3798 − 3806 doi: 10.1002/jbm.a.35523

    86. [86]

      Banerjee S, Shah P N, Jeong Y, Chang T, Seethamraju K, Faust R. J Chromatogr A, 2015, 1376: 98 − 104 doi: 10.1016/j.chroma.2014.12.022

    87. [87]

      Nugay N, Toth K, Kekec N C, Nugay T, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2016, 54(17): 2760 − 2765 doi: 10.1002/pola.28158

    88. [88]

      Storey R F, Chisholm B J, Brister L B. Macromolecules, 1995, 28(12): 4055 − 4061 doi: 10.1021/ma00116a002

    89. [89]

      Feldman K E, Kade M J, Meijer E W, Hawker C J, Kramer E J. Macromolecules, 2011, 42: 9072 − 9081

    90. [90]

      Liu Xiao(刘晓), Li Shengran(李晟冉), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (11): 84 − 92

    91. [91]

      Chang Tianxiao(常添笑), Zhang Hangtian(张航天), Lu Congjie(卢聪杰), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2018, (6): 700 − 711 doi: 10.11777/j.issn1000-3304.2017.17290

    92. [92]

      Gao Y Z, Chang T X, Wu Y X. Appl Surf Sci, 2019, 483: 1027 − 1036 doi: 10.1016/j.apsusc.2019.03.103

  • 加载中
    1. [1]

      Wei Meng-juanGuo An-ruWu Yi-xian . Microstructure and Micromorphology of Poly (γ-benzyl-L-glutamate)-g-(Polytetrahydrofuran-b-Polyisobutylene) Copolymer. Acta Polymerica Sinica, 2017, (3): 506-515. doi: 10.11777/j.issn1000-3304.2017.16152

    2. [2]

      Liu XiaoLi Sheng-ranWu Yi-xian . Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach. Acta Polymerica Sinica, 2017, (11): 1753-1761. doi: 10.11777/j.issn1000-3304.2017.17023

    3. [3]

      Tian-xiao ChangHang-tian ZhangCong-jie LuYi-xian Wu . In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization. Acta Polymerica Sinica, 2018, 0(6): 700-711. doi: 10.11777/j.issn1000-3304.2017.17290

    4. [4]

      Sen LiMing-zu ZhangJin-lin HePei-hong Ni . Film Properties of Fluorinated Polymethacrylate/Polyisobutylene Based Block Copolymers. Acta Polymerica Sinica, 2014, (12): 1648-1658. doi: 10.11777/j.issn1000-3304.2014.14140

    5. [5]

      Meng-juan WeiQi ZhangHang-tian ZhangYi-xian WuIn situ Preparation and Properties of Poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene)/Ag Nanocomposites via Cationic Polymerization. Acta Polymerica Sinica, 2018, (4): 464-474. doi: 10.11777/j.issn1000-3304.2017.17130

    6. [6]

      Yi-xian WuQi ZhouJie DuNan Wang . Controlled/Living Cationic Polymerization of Olefins:System, Process and Application. Acta Polymerica Sinica, 2017, (7): 1047-1057. doi: 10.11777/j.issn1000-3304.2017.17045

    7. [7]

      Hang-jun DengJi-zhong Chen . EFFECT OF ETHYLENE GLYCOL ON POLYMERIZATION OF TETRAHYDROFURAN AND MOLECULAR WEIGHT OF PRODUCT. Acta Polymerica Sinica, 2013, (11): 1399-1406. doi: 10.3724/SP.J.1105.2013.13078

    8. [8]

      Qi ZhangMeng-juan WeiJin-rui DengYi-xian Wu . Synthesis and Properties of Polytetrahydrofuran-b-Polydimethylsilane-b-Polytetrahydrofuran Triblock Copolymer. Acta Polymerica Sinica, 2018, 0(9): 1202-1211. doi: 10.11777/j.issn1000-3304.2018.18032

    9. [9]

      Ya-zhuo WangDe-wang MaYing-chun ZhaoMing MingJia WuJian-dong Ding . LIGHT-DRIVEN PROTON PUMPS OF ARCHAERHODOPSIN AND BACTERIORHODOPSIN AND POLYMER-MATRIX COMPOSITE MATERIALS OF THOSE FUNCTIONAL PROTEINS. Acta Polymerica Sinica, 2012, (7): 698-713. doi: 10.3724/SP.J.1105.2012.12051

    10. [10]

      Yong-xin YanTing-ting YinDeng-feng LiuNa LiuJun YinYuan-yuan ZhuZong-quan Wu . Highly Selective Visual Detection of Co2+ by Poly(3-hexylthiophene)-b-Poly(quinoxaline-2,3-diyl) Conjugated Copolymer. Acta Polymerica Sinica, 2015, (3): 319-325. doi: 10.11777/j.issn1000-3304.2015.140279

    11. [11]

      Xiao-xia LiMeng-xin GuLiang-shun ZhangJia-ping Lin . Computational Investigation on the Superstructures of Micelles from Amphiphilic DNA Block Copolymers. Acta Polymerica Sinica, 2020, 51(11): 1257-1266. doi: 10.11777/j.issn1000-3304.2020.20078

    12. [12]

      Hong-zhen WangYa-wei QinJin-yong Dong . DESIGN AND SYNTHESIS OF POLYPROPYLENE-b-POLYPHOSPHATE BLOCK COPOLYMERS. Acta Polymerica Sinica, 2013, (4): 518-525. doi: 10.3724/SP.J.1105.2013.12273

    13. [13]

      Xiao-lu LiRui WangChun-fang YangZhen-feng DongXiu-qin ZhangDu-jin WangDe-yi Wang . Effect of Poly(D-lactic acid) Block Copolymers with Soft Chains on the Tensile Behavior of Poly(L-lactic acid). Acta Polymerica Sinica, 2018, 0(5): 598-606. doi: 10.11777/j.issn1000-3304.2017.17197

    14. [14]

      Zhi-yao LiuZheng WangYu-hua YinRun JiangBao-hui Li . A Simulation Study of Enhancing the Compatibility in Block Copolymer AB/Homopolymer C Blends by Solvents. Acta Polymerica Sinica, 2019, 50(11): 1220-1228. doi: 10.11777/j.issn1000-3304.2019.19072

    15. [15]

      QIN Jiang-LeiCHEN Yong-Ming . SHAPED CORE-SHELL NANOPARTICLES PREPARED FROM SELF-ASSEMBLY OF BLOCK COPOLYMERS. Acta Polymerica Sinica, 2011, (6): 572-585. doi: 10.3724/SP.J.1105.2011.11132

    16. [16]

      Jian WangYu-yuan LuYu-ci XuYong-jin RuanLiang-yi LiLi-jia An . Effects of Block Copolymer Compatibilizers on Phase Behavior and Interfacial Properties of Incompatible Homopolymer Composites. Acta Polymerica Sinica, 2016, (3): 271-287. doi: 10.11777/j.issn1000-3304.2016.15340

    17. [17]

      Shuang-feng TangJin WuLin-jun CaiChu-chun Yen . SYNTHESIS AND CHARACTERIZATION OF DIBLOCK POLY(-BENZYL-L-GLUTAMATE)-b-POLY(-DODECYL-L-GLUTAMATE). Acta Polymerica Sinica, 2012, (8): 887-894. doi: 10.3724/SP.J.1105.2012.11392

    18. [18]

      Yue YinDa-long ZhaiShu-wen ChenXin ShangLi-xin LiJuan Peng . Controlling the Condensed Structure of Polythiophene and Polyselenophene-based All-conjugated Block Copolymers. Acta Polymerica Sinica, 2020, 51(5): 434-447. doi: 10.11777/j.issn1000-3304.2020.19220

    19. [19]

      You JieYe LinZhang Ai-yingFeng Zeng-guo . Synthesis and Characterization of Matched Double-chain and Loose-fit Single-chain Stranded γ-CD-based Polypseudorotaxane Containing. Acta Polymerica Sinica, 2017, (8): 1320-1330. doi: 10.11777/j.issn1000-3304.2017.16357

    20. [20]

      Miao BieJie YangXun-di YinYong-zhong Bao . Micellization Behavior of Poly(vinylidene chloride-methyl acrylate)-b-Poly(acrylic acid) Block Copolymers. Acta Polymerica Sinica, 2016, (4): 443-448. doi: 10.11777/j.issn1000-3304.2016.15228

  • gfzxb20190151wuyixian.pdf

Metrics
  • PDF Downloads(96)
  • Abstract views(1661)
  • HTML views(699)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return