ISSN 1000-3304CN 11-1857/O6

Citation: Hu-jun Qian and Zhong-yuan Lu. Interface Properties in Polymer/Single-chain Nanoparticle Composite[J]. Acta Polymerica Sinica, 2020, 51(1): 55-65. doi: 10.11777/j.issn1000-3304.2020.19152 shu

Interface Properties in Polymer/Single-chain Nanoparticle Composite

Figures(12)

  • It is a practical method to control the property of polymer material by incorporating nanoparticles. Recently polymer/nanoparticle composites have drawn increasing attention in the polymer field. Although researchers have made apparent progresses in the property regulation of polymeric materials by incorporating nanoparticles, progress in the development of the corresponding theory is, however, greatly inhibited, due to the lack of proper characterization approach, especially on the interaction mechanism between various nanoparticles and matrix polymers mainly at their interface area. This mini review summarizes recent simulation results of our research group, especially on a polymer/nanoparticle composite system where nanoparticles are single-chain crosslinked polymer nanoparticles with the same chemical composition as matrix polymers. In particular, after a thorough discussion of the structure and dynamic properties at nanoparticle/polymer interface region, it is clear that the interface in this system, where nanoparticle and matrix polymer interact effectively, has approximately the same size as nanoparticle itself. This interface size has no dependence of matrix polymer chain length. We hope that this conclusion can be helpful for the further development of relevant theory for polymer/nanocomposite systems.
  • 加载中
    1. [1]

      Giannelis E P, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In: Granick S, eds. Polymers in Confined Environments. Advances in Polymer Science, Vol 138. Berlin, Heidelberg: Springer, 1999. 107 − 147

    2. [2]

      Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. J Mater Res, 1993, 8(5): 1185 − 1189 doi: 10.1557/JMR.1993.1185

    3. [3]

      Tsagaropoulos G, Eisenberg A. Macromolecules, 1995, 28(18): 6067 − 6077 doi: 10.1021/ma00122a011

    4. [4]

      Lee A, Lichtenhan J D. Macromolecules, 1998, 31(15): 4970 − 4974 doi: 10.1021/ma9800764

    5. [5]

      Zheng L, Farris R J, Coughlin E B. Macromolecules, 2001, 34(23): 8034 − 8039 doi: 10.1021/ma0110094

    6. [6]

      Galgali G, Ramesh C, Lele A. Macromolecules, 2001, 34(4): 852 − 858 doi: 10.1021/ma000565f

    7. [7]

      Sternstein S S, Zhu A J. Macromolecules, 2002, 35(19): 7262 − 7273 doi: 10.1021/ma020482u

    8. [8]

      Schaefer D W, Justice R S. Macromolecules, 2007, 40(24): 8501 − 8517 doi: 10.1021/ma070356w

    9. [9]

      Favier V, Chanzy H, Cavaille J Y. Macromolecules, 1995, 28(18): 6365 − 6367 doi: 10.1021/ma00122a053

    10. [10]

      Vaia R A, Giannelis E P. Macromolecules, 1997, 30(25): 7990 − 7999 doi: 10.1021/ma9514333

    11. [11]

      Vaia R A, Giannelis E P. Macromolecules, 1997, 30(25): 8000 − 8009 doi: 10.1021/ma9603488

    12. [12]

      Krishnamoorti R, Giannelis E P. Macromolecules, 1997, 30(14): 4097 − 4102 doi: 10.1021/ma960550a

    13. [13]

      Balazs A C, Singh C, Zhulina E. Macromolecules, 1998, 31(23): 8370 − 8381 doi: 10.1021/ma980727w

    14. [14]

      Ren J X, Silva A S, Krishnamoorti R. Macromolecules, 2000, 33(10): 3739 − 3746 doi: 10.1021/ma992091u

    15. [15]

      Solomon M J, Almusallam A S, Seefeldt K F, Somwangthanaroj A, Varadan P. Macromolecules, 2001, 34(6): 1864 − 1872 doi: 10.1021/ma001122e

    16. [16]

      Bharadwaj R K. Macromolecules, 2001, 34(26): 9189 − 9192 doi: 10.1021/ma010780b

    17. [17]

      Ray S S, Maiti P, Okamoto M, Yamada K, Ueda K. Macromolecules, 2002, 35(8): 3104 − 3110 doi: 10.1021/ma011613e

    18. [18]

      Ray S S, Okamoto K, Okamoto M. Macromolecules, 2003, 36(7): 2355 − 2367 doi: 10.1021/ma021728y

    19. [19]

      Lin Y, Zhou B, Fernando K A S, Liu P, Allard L F, Sun Y P. Macromolecules, 2003, 36(19): 7199 − 7204 doi: 10.1021/ma0348876

    20. [20]

      Liu T X, Phang I Y, Shen L, Chow S Y, Zhang W D. Macromolecules, 2004, 37(19): 7214 − 7222 doi: 10.1021/ma049132t

    21. [21]

      Du F M, Scogna R C, Zhou W, Brand S, Fischer J E, Winey K I. Macromolecules, 2004, 37(24): 9048 − 9055 doi: 10.1021/ma049164g

    22. [22]

      Zhao X, Zhang Q H, Chen D J, Lu P. Macromolecules, 2010, 43(5): 2357 − 2363 doi: 10.1021/ma902862u

    23. [23]

      Kim H, Abdala A A, Macosko C W. Macromolecules, 2010, 43(16): 6515 − 6530 doi: 10.1021/ma100572e

    24. [24]

      Moniruzzaman M, Winey K I. Macromolecules, 2006, 39(16): 5194 − 5205 doi: 10.1021/ma060733p

    25. [25]

      LeBaron P C, Wang Z, Pinnavaia T J. Appl Clay Sci, 1999, 15(1): 11 − 29

    26. [26]

      Alexandre M, Dubois P. Mater Sci Eng, R, 2000, 28(1): 1 − 63

    27. [27]

      Ray S S, Okamoto M. Prog Polym Sci, 2003, 28(11): 1539 − 1641 doi: 10.1016/j.progpolymsci.2003.08.002

    28. [28]

      Winey K I, Vaia R A. MRS Bull, 2007, 32(4): 314 − 319 doi: 10.1557/mrs2007.229

    29. [29]

      Krishnamoorti R, Vaia R A. J Polym Sci, Part B: Polym Phys, 2007, 45(24): 3252 − 3256 doi: 10.1002/polb.21319

    30. [30]

      Tchoul M N, Fillery S P, Koerner H, Drummy L F, Oyerokun F T, Mirau P A, Durstock M F, Richard A V. Chem Mater, 2010, 22(5): 1749 − 1759 doi: 10.1021/cm903182n

    31. [31]

      Tang Zhenghai(唐征海), Guo Baochun(郭宝春), Zhang Liqun(张立群), Jia Demin(贾德民). Acta Polymerica Sinica(高分子学报), 2014, (7): 865 − 877 doi: 10.11777/j.issn1000-3304.2014.14084

    32. [32]

      You Feng(游峰), Wang Dongrui(王东瑞). Acta Polymerica Sinica(高分子学报), 2014, (7): 878 − 884 doi: 10.11777/j.issn1000-3304.2014.13395

    33. [33]

      Miziolek A W, Mauro J M, Vaia R A, Karna S P. Defense Applications of Nanomaterials. Washington DC: American Chemical Society, 2005. 82 − 101

    34. [34]

      Mittal V. Polymer Nanotubes Nanocomposites: Synthesis, Properties and Applications, 2nd ed. Beverly: Scrivener Publishing, 2014. 1 − 460

    35. [35]

      Maillard D, Kumar S K, Fragneaud B, Kysar J W, Rungta A, Benicewicz B C, Deng H, Brinson L C, Douglas J F. Nano Lett, 2012, 12(8): 3909 − 3914 doi: 10.1021/nl301792g

    36. [36]

      Guzeyev V, Rafikov M, Malinskii Y. Polym Sci USSR, 1975, 17(4): 923 − 926 doi: 10.1016/0032-3950(75)90263-4

    37. [37]

      Tuteja A, Duxbury P M, Mackay M E. Macromolecules, 2007, 40(26): 9427 − 9434 doi: 10.1021/ma071313i

    38. [38]

      Tan H, Lin Y, Zheng J, Gong J, Qiu J, Xing H, Tang T. Soft Matter, 2015, 11(20): 3986 − 3993 doi: 10.1039/C5SM00244C

    39. [39]

      Schmidt R G, Gordon G V, Dreiss C A, Cosgrove T, Krukonis V J, Williams K, Wetmore P M. Macromolecules, 2010, 43(23): 10143 − 10151 doi: 10.1021/ma1004919

    40. [40]

      Tan H, Xu D, Wan D, Wang Y, Wang L, Zheng J, Liu F, Ma L, Tang T. Soft Matter, 2013, 9(27): 6282 − 6290 doi: 10.1039/c3sm00103b

    41. [41]

      Mangal R, Srivastava S, Archer L A. Nat Commun, 2015, 6: 7198 doi: 10.1038/ncomms8198

    42. [42]

      Kim D, Srivastava S, Narayanan S, Archer L A. Soft Matter, 2012, 8(42): 10813 doi: 10.1039/c2sm26325d

    43. [43]

      Goldansaz H, Goharpey F, Afshar-Taromi F, Kim I, Stadler F J, van Ruymbeke E, Karimkhani V. Macromolecules, 2015, 48(10): 3368 doi: 10.1021/acs.macromol.5b00390

    44. [44]

      Wyart F B, de Gennes P G. Eur Phys J E: Soft Matter Biol Phys, 2000, 1(1): 93 − 97 doi: 10.1007/s101890050011

    45. [45]

      Liu J, Cao D P, Zhang L Q. J Phys Chem C, 2008, 112(17): 6653 − 6661 doi: 10.1021/jp800474t

    46. [46]

      Kalathi J T, Yamamoto U, Schweizer K S, Grest G S, Kumar S K. Phys Rev Lett, 2014, 112: 108301 doi: 10.1103/PhysRevLett.112.108301

    47. [47]

      Chen T, Qian H J, Lu Z Y. J Chem Phys, 2016, 145(10): 106101 doi: 10.1063/1.4962370

    48. [48]

      Cai L H, Panyukov S, Rubinstein M. Macromolecules, 2011, 44: 7853 − 7863 doi: 10.1021/ma201583q

    49. [49]

      Cai L H, Panyukov S, Rubinstein M. Macromolecules, 2015, 48: 847 − 862 doi: 10.1021/ma501608x

    50. [50]

      Yamamoto U, Carrillo J Y, Bocharova V, Sokolov A P, Sumpter B G, Schweizer K S. Macromolecules, 2018, 51(6): 2258 − 2267 doi: 10.1021/acs.macromol.7b02694

    51. [51]

      Griffin P J, Bocharova V, Middleton L R, Composto R J, Clarke N, Schweizer K S, Winey K I. Macromolecules, 2016, 5(10): 1141 − 1145

    52. [52]

      Carroll B, Bocharova V, Carrillo J Y, Kisliuk A, Cheng S, Yamamoto U, Schweizer K S, Sumpter B G, Sokolov A P. Macromolecules, 2018, 51(6): 2268 − 2275 doi: 10.1021/acs.macromol.7b02695

    53. [53]

      Bailey E J, Griffin P J, Composto R J, Winey K I. Macromolecules, 2019, 52(5): 2181 − 2188 doi: 10.1021/acs.macromol.8b02646

    54. [54]

      Cheng S, Xie S, Carrillo J Y, Carroll B, Martin H, Cao P F, Dadmun M D, Sumpter B G, Novikov V N, Schweizer K S, Sokolov A P. ACS Nano, 2017, 11(1): 752 − 759 doi: 10.1021/acsnano.6b07172

    55. [55]

      Cheng S, Bocharova V, Belianinov A, Xiong S, Kisliuk A, Somnath S, Holt A P, Ovchinnikova O S, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov A P. Nano Lett, 2016, 16(6): 3630 − 3637 doi: 10.1021/acs.nanolett.6b00766

    56. [56]

      Carroll B, Cheng S, Sokolov A P. Macromolecules, 2017, 50(16): 6149 − 6163 doi: 10.1021/acs.macromol.7b00825

    57. [57]

      Cheng S, Carroll B, Lu W, Fan F, Carrillo J M Y, Martin H, Holt A P, Kang N G, Bocharova V, Mays J W, Sumpter B G, Dadmun M, Sokolov A P. Macromolecules, 2017, 50(6): 2379 − 2406

    58. [58]

      Cheng S, Carroll B, Bocharova V, Carrillo J M Y, Sumpter B G, Sokolov A P. J. Chem Phys, 2017, 146(20): 203201 doi: 10.1063/1.4978504

    59. [59]

      Ndoro T V M, Böhm M C, Müller-Plathe F. Macromolecules, 2012, 45(1): 171 − 179 doi: 10.1021/ma2020613

    60. [60]

      Ndoro T V M, Voyiatzis E, Ghanbari A, Theodorou D N, Böhm M C, Müller-Plathe F. Macromolecules, 2011, 44(7): 2316 − 2327 doi: 10.1021/ma102833u

    61. [61]

      Ghanbari A, Ndoro T V M, Leroy F, Rahimi M, Böhm M C, Müller-Plathe F. Macromolecules, 2012, 45(1): 572 − 584 doi: 10.1021/ma202044e

    62. [62]

      Eslami H, Rahimi M, Müller-Plathe F. Macromolecules, 2013, 46(21): 8680 − 8692 doi: 10.1021/ma401443v

    63. [63]

      Eslami H, Müller-Plathe F. J Phys Chem C, 2013, 117(10): 5249 − 5257 doi: 10.1021/jp400142h

    64. [64]

      Mackay M E, Dao T T, Tuteja A, Ho D L, van Horn B, Kim H C, Hawker C J. Nat Mater, 2003, 2(11): 762 − 766 doi: 10.1038/nmat999

    65. [65]

      Tuteja A, Mackay M E, Hawker C J, van Horn B. Macromolecules, 2005, 39(19): 8000 − 8011

    66. [66]

      Chen T, Qian H J, Lu Z Y. Macromolecules, 2015, 48(8): 2751 − 2760 doi: 10.1021/ma502383n

    67. [67]

      Chen T, Qian H J, Lu Z Y. Chem Phys Lett, 2017, 687: 96 − 100 doi: 10.1016/j.cplett.2017.09.010

    68. [68]

      Jia X M, Shi R, Jiao G S, Chen T, Qian H J, Lu Z Y. Macromol Chem Phys, 2017, 218(16): 1700029 doi: 10.1002/macp.201700029

    69. [69]

      Tuteja A, Duxbury P M, Mackay M E. Phys Rev Lett, 2008, 100: 077801 doi: 10.1103/PhysRevLett.100.077801

    70. [70]

      Gong S, Chen Q, Moll J F, Kumar S K, Colby R H. ACS Macro Lett, 2014, 3(8): 773 − 777 doi: 10.1021/mz500252f

    71. [71]

      Cheng S, Carroll B, Lu W, Fan F, Carrillo J M Y, Martin H, Holt A P, Kang N G, Bocharova V, Mays J W, Sumpter B G, Dadmun M, Sokolov A P. Macromolecules, 2017, 50(6): 2397 − 2406 doi: 10.1021/acs.macromol.6b02816

    72. [72]

      Jimenez A M, Zhao D, Misquitta K, Jestin J, Kumar S K. ACS Macro Lett, 2019, 8(2): 166 − 171 doi: 10.1021/acsmacrolett.8b00877

  • 加载中
    1. [1]

      Shen YuRong-chun ZhangPing-chuan Sun . Nano-silica Induced Crystallization in Polyurethane Elastomers. Acta Polymerica Sinica, 2014, (1): 72-79. doi: 10.3724/SP.J.1105.2014.13156

    2. [2]

      Zhang Lian-binWang KeZhu Jin-tao . Research Progress on Confined Assembly of Block Copolymers in China. Acta Polymerica Sinica, 2017, (8): 1261-1276. doi: 10.11777/j.issn1000-3304.2017.17126

    3. [3]

      GAO LinglingTONG BinYAO GuijunDONG YupingZHANG MaofengLAM Jacky Wing YipTANG Benzhong . in-situ COMPLEXES OF SELF-ASSEMBLED FILMS OF CONJUGATED POLYMERS WITH PbS NANOPARTICLES AND THEIR PHOTOVOLTAIC PROPERTIES. Acta Polymerica Sinica, 2005, (3): 313-316.

    4. [4]

      Yong-jin RuanZhen-hua WangYu-yuan LuLi-jia An . Single Chain Models of Polymer Dynamics. Acta Polymerica Sinica, 2017, (5): 727-743. doi: 10.11777/j.issn1000-3304.2017.16320

    5. [5]

      YANG ZhenzhongZHAO DeluXU YuanzeXU Mao . RELATIONSHIP BETWEEN THE PROPERTY OF INTERFACIAL LAYER AND WATERBORNE PARTICLES OF POLYMER RESIN. Acta Polymerica Sinica, 1997, (5): 636-640.

    6. [6]

      Shi-yi Chen Wei You Wei Yu . Dynamic and Rheological Behavior of Particle Crosslinked Vitrimers. Acta Polymerica Sinica, 2020, 51(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20013

    7. [7]

      Ning-ning LiLei WangYuan LiuHao-jun Liang . Molecular Dynamics Investigation of the Compression and Stretching of Polymer Nano-composite Systems. Acta Polymerica Sinica, 2014, (9): 1292-1300. doi: 10.11777/j.issn1000-3304.2014.14052

    8. [8]

      XU LimeiZHANG Linxi . STATISTICAL PROPERTIES OF POLYMER BRUSHES/MAGNETIC NANO-PARTICLES CONFINED IN PARALLEL PLANES. Acta Polymerica Sinica, 2011, (11): 1298-1304. doi: 10.3724/SP.J.1105.2011.10347

    9. [9]

      LI MingZHANG Linxi . MECHANICS BEHAVIORS OF ADSORBED THREE-DIMENSIONAL COMPACT CHAINS. Acta Polymerica Sinica, 2007, (4): 343-348.

    10. [10]

      WANG YuZHANG Linxi . A Steered Molecular Dynamcs Study of Adsorbed Polymer Chains. Acta Polymerica Sinica, 2008, (3): 216-220. doi: 10.3724/SP.J.1105.2008.00216

    11. [11]

      Jia-zi HouWan-xi ZhangLi-li Li . Dynamics of Single Polymer Translocation Through a Fluidic Nanopore. Acta Polymerica Sinica, 2015, (10): 1196-1200. doi: 10.11777/j.issn1000-3304.2015.15069

    12. [12]

      GUO JiayiLI XuejinLIANG Haojun . DISSIPATIVE PARTICLE DYNAMICS SIMULATIONS OF FLUID-DRIVEN POLYMER CHAINS THROUGH A MICROCHANNEL. Acta Polymerica Sinica, 2012, (2): 160-167. doi: 10.3724/SP.J.1105.2012.11117

    13. [13]

      . . Acta Polymerica Sinica, 1959, 3(5): 225-232.

    14. [14]

      SHEN YuZHANG ZhaoyunZHANG Linxi . ELASTIC BEHAVIOR OF POLYMER CHAINS CONFINED IN PARALLEL INTERFACES. Acta Polymerica Sinica, 2007, (2): 108-113.

    15. [15]

      L?-wen ZhouMou-bin LiuJian-zhong Chang . DISSIPATIVE PARTICLE DYNAMICS SIMULATIONS OF MACROMOLECULES IN MICRO-CHANNELS. Acta Polymerica Sinica, 2012, (7): 720-727. doi: 10.3724/SP.J.1105.2012.11345

    16. [16]

      Shu-man Cheng Pu Guo Li-ping Heng . Regulation of adhesion between polymer solid-liquid composite interface and liquid. Acta Polymerica Sinica, 2020, 51(5): 0-0. doi: 10.11777/j.issn1000-3304.2020.19226

    17. [17]

      CHEN YingcaiWANG ChaoLUO Mengbo . DYNAMICAL MONTE CARLO SIMULATIONS ON THE ENTROPY OF POLYMER CHAINS CONFINED BETWEEN TWO PARALLEL PLATES. Acta Polymerica Sinica, 2010, (9): 1082-1087. doi: 10.3724/SP.J.1105.2010.09326

    18. [18]

      Jia-jing ZhouDi WuDe-rong LuHong-wei Duan . Progress in Self-assembly of Polymer-coated Au Nanoparticles. Acta Polymerica Sinica, 2018, 0(8): 1033-1047. doi: 10.11777/j.issn1000-3304.2018.18050

    19. [19]

      Lian-wei LiFan JinWei-dong HeChi Wu . How Do Polymer Chains with Different Topologies Pass Through a Cylindrical Pore under an Elongational Flow Field?. Acta Polymerica Sinica, 2014, (1): 1-21. doi: 10.3724/SP.J.1105.2014.13390

    20. [20]

      Yang YangXiang-yu BuXing-hua Zhang . Structure Factor Based on the Wormlike-chain Model of Single Semiflexible Polymer. Acta Polymerica Sinica, 2016, (8): 1002-1010. doi: 10.11777/j.issn1000-3304.2016.16066

Metrics
  • PDF Downloads(126)
  • Abstract views(849)
  • HTML views(475)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return