ISSN 1000-3304CN 11-1857/O6

可持续高分子-纤维素新材料研究进展

段博 涂虎 张俐娜

引用本文: 段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160 shu
Citation1:  Bo Duan, Hu Tu and Li-na Zhang. Material Research Progress of the Sustainable Polymer-Cellulose[J]. Acta Polymerica Sinica, 2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160 shu

可持续高分子-纤维素新材料研究进展

    作者简介: 段博,男,1987年生,副研究员. 2015年毕业于武汉大学化学与分子科学学院并获得理学博士学位. 2016 ~ 2019年在美国斯托瓦斯研究所从事博士后工作,研究生殖干细胞分化微环境. 2019年6月进入武汉大学化学与分子科学学院从事天然高分子方面的研究工作. 主要研究方向为甲壳素、纤维素功能材料的开发;张俐娜,女,1940年生,教授/博导,中国科学院院士. 1963年毕业于武汉大学化学系. 1985年曾获日本政府学术振兴协会奖学金(JSPS)赴大阪大学研究近2年. 1993年创立天然高分子科研组,2011年当选中国科学院院士,2014年为英国皇家化学会会士. 现任美国化学会刊物ACS Sustainable Chemistry & Engineering的副主编以及多家国内外刊物编委. 基础研究成果已在国内外刊物发表论文600余篇,其中560余篇发表在国际SCI源刊上,被他人引用近18000次;主编专著15部;获准专利100余项;荣获国家自然科学奖二等奖1项,省级自然科学一等奖1项及技术发明一等奖1项;获美国化学会2011年Anselme Payen奖(国际纤维素与可再生资源材料领域最高奖). 曾获全国优秀教师和全国先进工作者等国家级荣誉. 主要研究方向为高分子物理、天然高分子改性材料、复杂多糖的分子和链构象与其生物活性关系;
    通讯作者: 段博, E-mail: bo_duan@whu.edu.cn 张俐娜, E-mail: zhangln@whu.edu.cn
摘要: 21世纪“绿色”化学已成为世界各国社会经济发展中的研究与开发战略方向. 纤维素是自然界中储量最丰富的天然高分子,是重要的可再生资源以及未来的主要工业原料. 然而由于纤维素存在着大量的分子内以及分子间氢键,其结构致密,难以溶解或熔融进一步加工. 本文简要介绍了近几年来关于直接使用物理溶剂方法(非衍生化)对纤维素材料开发利用的新进展,主要包括以下4个方面:(1)纤维素在“绿色”溶剂-碱/尿素以及离子液体体系中的溶解和再生;(2)纳米纤维素的制备以及组装;(3)木材纳米技术的开发及利用;(4)细菌纤维素基材料等,旨在推进“绿色”技术实现纤维素资源的研究开发及利用.

English

    1. [1]

      Chandhuri S. The Wall Street Journal @ Statista Charts, 2018-12-12

    2. [2]

      Macarthur E. Science, 2017, 358(6365): 843 doi: 10.1126/science.aao6749

    3. [3]

      Science, 2017, 358(6369): 1362 − 1363

    4. [4]

      Lamb J B, Willis B L, Fiorenza E A, Couch C S, Howard R, Rader D N, True J D, Kelly L A, Ahmad A, Jompa J. Science, 2018, 359(6374): 460 − 462 doi: 10.1126/science.aar3320

    5. [5]

      People’s Daily Overseas Edition, 2019-07-05

    6. [6]

      Zhu Y, Romain C, Williams C K. Nature, 2016, 540: 354 − 362 doi: 10.1038/nature21001

    7. [7]

      Smaglik P. Nature, 2000, 406: 807 − 808 doi: 10.1038/35021181

    8. [8]

      Wang S, Lu A, Zhang L. Prog Polym Sci, 2016, 53: 169 − 206 doi: 10.1016/j.progpolymsci.2015.07.003

    9. [9]

      Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351 doi: 10.1021/ma801110g

    10. [10]

      Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L. J Phys Chem B, 2014, 118(34): 10250 − 10257 doi: 10.1021/jp501408e

    11. [11]

      Wang S, Sun P, Liu M, Lu A, Zhang L. Phys Chem Chem Phys, 2017, 19(27): 17909 − 17917 doi: 10.1039/C7CP02514A

    12. [12]

      Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L. Phys Chem Chem Phys, 2017, 19(11): 7486 − 7490 doi: 10.1039/C6CP08744B

    13. [13]

      Wang Y, Liu L, Chen P, Zhang L, Lu A. Phys Chem Chem Phys, 2018, 20(20): 14223 − 14233 doi: 10.1039/C8CP01268G

    14. [14]

      Ye D, Cheng Q, Zhang Q, Wang Y, Chang C, Li L, Peng H, Zhang L. ACS Appl Mater Interfaces, 2017, 9(49): 43154 − 43162 doi: 10.1021/acsami.7b14900

    15. [15]

      Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J. Adv Funct Mater, 2016, 26(34): 6279 − 6287 doi: 10.1002/adfm.201601645

    16. [16]

      Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, Zhang L. ACS Nano, 2019, 13(4): 4843 − 4853 doi: 10.1021/acsnano.9b02081

    17. [17]

      Ye D, Yang P, Lei X, Zhang D, Li L, Chang C, Sun P, Zhang L. Chem Mater, 2018, 30(15): 5175 − 5183 doi: 10.1021/acs.chemmater.8b01799

    18. [18]

      Ye D, Chang C, Zhang L. Biomacromolecules, 2019, 20(5): 1989 − 1995 doi: 10.1021/acs.biomac.9b00204

    19. [19]

      Zhu K, Qiu C, Lu A, Luo L, Guo J, Cong H, Chen F, Liu X, Zhang X, Wang H, Cai J, Fu Q, Zhang L. ACS Sustain Chem Eng, 2018, 6(4): 5314 − 5321 doi: 10.1021/acssuschemeng.8b00039

    20. [20]

      Qiu C, Zhu K, Yang W, Wang Y, Zhang L, Chen F, Fu Q. Biomacromolecules, 2018, 19(11): 4386 − 4395 doi: 10.1021/acs.biomac.8b01262

    21. [21]

      Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. Adv Energy Mater, 2016, 6(6): 1501929 doi: 10.1002/aenm.201501929

    22. [22]

      Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L. ACS Appl Mater Interfaces, 2016, 8(27): 17090 − 17097 doi: 10.1021/acsami.6b03555

    23. [23]

      Dai L, Zhu W, Lu J, Kong F, Si C, Ni Y. Green Chem, 2019, 21(19): 5222 − 5230 doi: 10.1039/C1039GC01975H

    24. [24]

      Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J Am Chem Soc, 2002, 124(18): 4974 − 4975 doi: 10.1021/ja025790m

    25. [25]

      Zhang H, Wu J, Zhang J, He J. Macromolecules, 2005, 38(20): 8272 − 8277 doi: 10.1021/ma0505676

    26. [26]

      Raghuwanshi V S, Cohen Y, Garnier G, Garvey C J, Russell R A, Darwish T, Garnier G. Macromolecules, 2018, 51(19): 7649 − 7655 doi: 10.1021/acs.macromol.8b01425

    27. [27]

      Liu H, Sale K L, Holmes B M, Simmons B A, Singh S. J Phys Chem B, 2010, 114(12): 4293 − 4301 doi: 10.1021/jp9117437

    28. [28]

      Rabideau B D, Ismail A E. J Phys Chem B, 2012, 116(32): 9732 − 9743 doi: 10.1021/jp305469p

    29. [29]

      Vitz J, Erdmenger T, Haensch C, Schubert U. Green Chem, 2009, 11(3): 417 − 424 doi: 10.1039/b818061j

    30. [30]

      Mazza M, Catana D A, Vaca-Garcia C, Cecutti C J C. Cellulose, 2009, 16(2): 207 − 215 doi: 10.1007/s10570-008-9257-x

    31. [31]

      Wan J, Zhang J, Yu J, Zhang J. ACS Appl Mater Interfaces, 2017, 9(29): 24591 − 24599 doi: 10.1021/acsami.7b06271

    32. [32]

      Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J F. Phys Chem Chem Phys, 2010, 12: 1941 − 1947 doi: 10.1039/b920446f

    33. [33]

      Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J. Chem Commun, 2012, 48: 6283 − 6285 doi: 10.1039/c2cc31483e

    34. [34]

      Zhang J, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J. Sci China Chem, 2016, 59: 1421 − 1429 doi: 10.1007/s11426-016-0269-5

    35. [35]

      Liu J, Zhang J, Zhang B, Zhang X, Xu L, Zhang J, He J, Liu C Y. Cellulose, 2016, 23: 2341 − 2348 doi: 10.1007/s10570-016-0967-1

    36. [36]

      Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J. Polym Int, 2015, 64: 963 − 970 doi: 10.1002/pi.4883

    37. [37]

      Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Mater Chem Front, 2017, 1: 1273 − 1290 doi: 10.1039/C6QM00348F

    38. [38]

      Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4(8): 4417 − 4423 doi: 10.1021/acssuschemeng.6b01034

    39. [39]

      Mi Q, Ma S-r, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4: 656 − 660 doi: 10.1021/acssuschemeng.5b01079

    40. [40]

      Nguyen N A, Kim K, Bowland C C, Keum J K, Kearney L T, André N, Labbé N, Naskar A K. Green Chem, 2019, 21(16): 4354 − 4367 doi: 10.1039/C9GC00774A

    41. [41]

      Yang S, Lu X, Zhang Y, Xu J, Xin J, Zhang S. Cellulose, 2018, 25(6): 3241 − 3254 doi: 10.1007/s10570-018-1785-4

    42. [42]

      Shamshina J L, Zavgorodnya O, Choudhary H, Frye B, Newbury N, Rogers R D. ACS Sustain Chem Eng, 2018, 6(11): 14713 − 14722 doi: 10.1021/acssuschemeng.8b03269

    43. [43]

      Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Biomacromolecules, 2008, 10(1): 162 − 165

    44. [44]

      Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv Mater, 2009, 21(16): 1595 − 1598 doi: 10.1002/adma.200803174

    45. [45]

      Ansari F, Salajková M, Zhou Q, Berglund L A. Biomacromolecules, 2015, 16: 3916 − 3924 doi: 10.1021/acs.biomac.5b01245

    46. [46]

      Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2018, 6(3): 2954 − 2960 doi: 10.1021/acssuschemeng.7b02363

    47. [47]

      Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(3): 2529 − 2534 doi: 10.1021/acssuschemeng.6b02867

    48. [48]

      Ci J, Cao C, Kuga S, Shen J, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(11): 9614 − 9618 doi: 10.1021/acssuschemeng.7b01970

    49. [49]

      Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules, 2007, 8(8): 2485 − 2491 doi: 10.1021/bm0703970

    50. [50]

      De France K J, Hoare T, Cranston E D. Chem Mater, 2017, 29(11): 4609 − 4631 doi: 10.1021/acs.chemmater.7b00531

    51. [51]

      Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Nat Nanotechnol, 2014, 10: 277 − 283

    52. [52]

      Xiong R, Yu S, Smith M J, Zhou J, Krecker M, Zhang L, Nepal D, Bunning T J, Tsukruk V V. ACS Nano, 2019, 13(8): 9047 − 9081 doi: 10.1021/acsnano.1029b03305

    53. [53]

      Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. Biomacromolecules, 2015, 16(5): 1489 − 1496 doi: 10.1021/acs.biomac.5b00188

    54. [54]

      Lundahl M J, Klar V, Wang L, Ago M, Rojas O J. Ind Eng Chem Res, 2017, 56(1): 8 − 19 doi: 10.1021/acs.iecr.6b04010

    55. [55]

      Richardson J J, Tardy B L, Guo J, Liang K, Rojas O J, Ejima H. ACS Sustain Chem Eng, 2019, 7(6): 6287 − 6294 doi: 10.1021/acssuschemeng.8b06713

    56. [56]

      Voisin H, Bergström L, Liu P, Mathew A P J N. Nanomaterials, 2017, 7(3): 57 doi: 10.3390/nano7030057

    57. [57]

      Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S X A, Xu Y. Adv Mater, 2018, 30(13): 1705948 doi: 10.1002/adma.201705948

    58. [58]

      Xu Y, Atrens A D, Stokes J R. Soft Matter, 2019, 15(8): 1716 − 1720 doi: 10.1039/C8SM02288G

    59. [59]

      Chu G, Qu D, Zussman E, Xu Y. Chem Mater, 2017, 29(9): 3980 − 3988 doi: 10.1021/acs.chemmater.7b00361

    60. [60]

      Hiratani T, Kose O, Hamad W Y, MacLachlan M J. Mater Horiz, 2018, 5(6): 1076 − 1081 doi: 10.1039/C8MH00586A

    61. [61]

      Kaushik M, Basu K, Benoit C, Cirtiu C M, Vali H, Moores A. J Am Chem Soc, 2015, 137(19): 6124 − 6127 doi: 10.1021/jacs.5b02034

    62. [62]

      Gu J, Hu C, Zhang W, Dichiara A B. Appl Catal B, 2018, 237: 482 − 490 doi: 10.1016/j.apcatb.2018.06.002

    63. [63]

      Ellebracht N C, Jones C W. ACS Catal, 2019, 9(4): 3266 − 3277 doi: 10.1021/acscatal.8b05180

    64. [64]

      Qin X, Xia W, Sinko R, Keten S. Nano Lett, 2015, 15(10): 6738 − 6744 doi: 10.1021/acs.nanolett.5b02588

    65. [65]

      Biswas S K, Tanpichai S, Witayakran S, Yang X, Shams M I, Yano H. ACS Nano, 2019, 13(2): 2015 − 2023

    66. [66]

      Zhu L, Zhou X, Liu Y, Fu Q. ACS Appl Mater Interfaces, 2019, 11(13): 12968 − 12977 doi: 10.1021/acsami.9b00136

    67. [67]

      Wu K, Fang J, Ma J, Huang R, Chai S, Chen F, Fu Q. ACS Appl Mater Interfaces, 2017, 9(35): 30035 − 30045 doi: 10.1021/acsami.7b08214

    68. [68]

      Yang W, Zhang Y, Liu T, Huang R, Chai S, Chen F, Fu Q. ACS Sustain Chem Eng, 2017, 5(10): 9102 − 9113 doi: 10.1021/acssuschemeng.7b02012

    69. [69]

      Cheng Q, Ye D, Chang C, Zhang L. J Membr Sci, 2017, 525: 1 − 8 doi: 10.1016/j.memsci.2016.11.084

    70. [70]

      Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. ACS Nano, 2018, 12(5): 4462 − 4468 doi: 10.1021/acsnano.8b00566

    71. [71]

      Zhu H, Yang X, Cranston E D, Zhu S. Adv Mater, 2016, 28(35): 7652 − 7657 doi: 10.1002/adma.201601351

    72. [72]

      Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste U H, Bruck H A, Zhu J Y, Vellore A, Li H, Minus M L, Jia Z, Martini A, Li T, Hu L. Nature, 2018, 554(7691): 224 − 228 doi: 10.1038/nature25476

    73. [73]

      Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, Mi R, Sunderland P B, Hu L. Adv Funct Mater, 2019, 29(14): 1807444 doi: 10.1002/adfm.201807444

    74. [74]

      Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. Science, 2019, 364(6442): 760 − 763 doi: 10.1126/science.aau9101

    75. [75]

      Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. Energy Environ Sci, 2017, 10: 538 − 545 doi: 10.1039/C6EE03716J

    76. [76]

      Song H, Xu S, Li Y, Dai J, Hu L. Adv Energy Mater, 2017, 8(4): 1701203

    77. [77]

      Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. Energy Environ Sci, 2018, 11(11): 3231 − 3237 doi: 10.1039/C8EE01468J

    78. [78]

      He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren Z J, Yang B, Das S, Hu L. Energy Environ Sci, 2019, 12(5): 1558 − 1567 doi: 10.1039/C9EE00945K

    79. [79]

      Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, Jia C, Chen C, Hitz E, Siddhartha D, Yang R, Hu L. Adv Funct Mater, 2018, 28(16): 1707134 doi: 10.1002/adfm.201707134

    80. [80]

      Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey S D, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L. Adv Mater, 2017, 29(44): 1704107 doi: 10.1002/adma.201704107

    81. [81]

      Kuang Y, Chen C, He S, Hitz E M, Wang Y, Gan W, Mi R, Hu L. Adv Mater, 2019, 31(23): 1900498

    82. [82]

      Picheth G F, Pirich C L, Sierakowski M R, Woehl M A, Sakakibara C N, de Souza C F, Martin A A, da Silva R, de Freitas R A. Int J Biol Macromol, 2017, 104: 97 − 106 doi: 10.1016/j.ijbiomac.2017.05.171

    83. [83]

      Foresti M L, Vázquez A, Boury B. Carbohydr Polym, 2017, 157: 447 − 467 doi: 10.1016/j.carbpol.2016.09.008

    84. [84]

      Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Acc Chem Res, 2016, 49(1): 96 − 105 doi: 10.1021/acs.accounts.5b00380

    85. [85]

      Chen Z, Hu Y, Zhuo H, Liu L, Jing S, Zhong L, Peng X, Sun R C. Chem Mater, 2019, 31: 3301 − 3312 doi: 10.1021/acs.chemmater.9b00259

    86. [86]

      Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. Adv Mater, 2017, 29(35): 1702498 doi: 10.1002/adma.201702498

    87. [87]

      Liang H W, Wu Z Y, Chen L F, Li C, Yu S H. Nano Energy, 2015, 11: 366 − 376 doi: 10.1016/j.nanoen.2014.11.008

    88. [88]

      Guan Q F, Han Z M, Luo T T, Yang H B, Liang H W, Chen S M, Wang G S, Yu S H J N S R. Natl Sci Rev, 2019, 6(1): 64 − 73 doi: 10.1093/nsr/nwy144

    89. [89]

      Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G. Small, 2018, 14(7): 1702582 doi: 10.1002/smll.201702582

    90. [90]

      Geisel N, Clasohm J, Shi X, Lamboni L, Yang J, Mattern K, Yang G, Schäfer K H, Saumer M. Small, 2016, 12(39): 5407 − 5413

    91. [91]

      Schaffner M, Rühs P A, Coulter F, Kilcher S, Studart A. Sci Adv, 2017, 3: 6804 doi: 10.1126/sciadv.aao6804

    92. [92]

      Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. ACS Appl Mater Interfaces, 2018, 10(39): 33049 − 33059 doi: 10.1021/acsami.8b12083

    93. [93]

      Shi Z, Gao X, Ullah M W, Li S, Wang Q, Yang G. Biomaterials, 2016, 111: 40 − 54 doi: 10.1016/j.biomaterials.2016.09.020

    94. [94]

      Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv Energy Mater, 2014, 4(10): 1301655 doi: 10.1002/aenm.201301655

    95. [95]

      Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy, 2014, 9: 309 − 317 doi: 10.1016/j.nanoen.2014.08.004

    96. [96]

      Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Small, 2017, 13(27): 1700130 doi: 10.1002/smll.201700130

    97. [97]

      Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Talanta, 2015, 131: 243 − 248 doi: 10.1016/j.talanta.2014.07.027

    1. [1]

      李文迪容建华林志丹张秀菊 . 细菌纤维素(BC)增强PVA/PVP复合水凝胶的制备及性能表征. 高分子学报, 2012, (4): 357-364. doi: 10.3724/SP.J.1105.2012.11175

    2. [2]

      张晶晶容建华李文迪林志丹张秀菊 . 细菌纤维素/聚丙烯酰胺水凝胶的制备及性能表征. 高分子学报, 2011, (6): 602-607. doi: 10.3724/SP.J.1105.2011.10137

    3. [3]

      岳丽娜郑裕东栾家斌余弈谢亚杰吴健 . 含水状态对细菌纤维素/聚苯胺复合凝胶膜制备及性能的影响. 高分子学报, 2014, (9): 1228-1237. doi: 10.11777/j.issn1000-3304.2014.13478

    4. [4]

      张金明武进余坚张晓程米勤勇张军 . 以离子液体为介质的纤维素加工与功能化. 高分子学报, 2017, (7): 1058-1072. doi: 10.11777/j.issn1000-3304.2017.17066

    5. [5]

      陈婧张金明陈韦韦丰晔张军 . 纤维素萘甲酸酯在离子液体中的均相合成. 高分子学报, 2013, (10): 1235-1240. doi: 10.3724/SP.J.1105.2013.13168

    6. [6]

      吕晓文李露林章碧崔树勋 . 离子液体再生纤维素水凝胶的形成机理及其在凝胶电泳中的应用. 高分子学报, 2011, (9): 1026-1032. doi: 10.3724/SP.J.1105.2011.10353

    7. [7]

      刘宏治陈宇飞耿璧垚茹静杜春贵金春德韩景泉 . 纤维素基气凝胶型吸油材料的研究进展. 高分子学报, 2016, (5): 545-559. doi: 10.11777/j.issn1000-3304.2016.15328

    8. [8]

      赵地顺付林林张娟李贺刘猛帅付江涛王薇 . 共溶剂存在下N-烯丙基吡啶氯盐离子液体对纤维素的溶解性能研究. 高分子学报, 2012, (9): 937-942. doi: 10.3724/SP.J.1105.2012.11407

    9. [9]

      王超丽胡小玲管萍吴丹锋钱立伟李季宋任远 . 离子液体作为功能单体制备溶菌酶分子印迹复合膜的研究. 高分子学报, 2015, (3): 259-265. doi: 10.11777/j.issn1000-3304.2015.14224

    10. [10]

      王能丁恩勇程镕时 . 纳米微晶纤维素表面改性研究. 高分子学报, 2006, (8): 982-987.

    11. [11]

      胡宇孙辉杨彪黄斌徐国志 . 聚乙烯醇/半纤维素/纤维素纳米晶复合膜的制备和性能. 高分子学报, 2016, (11): 1615-1620. doi: 10.11777/j.issn1000-3304.2016.16140

    12. [12]

      张晓茜周旋孙英娟岳丽娜石永香许可罗梓兮伍一波 . 在离子液体介质中对甲基苯乙烯阳离子聚合的研究. 高分子学报, 2019, 50(4): 375-383. doi: 10.11777/j.issn1000-3304.2018.18239

    13. [13]

      陈会英张树彪彭孝军崔韶晖赵轶男张传敏韩颖 . 壳聚糖在离子液体中均相接枝聚乙烯亚胺及其基因转运. 高分子学报, 2014, (8): 1089-1095. doi: 10.11777/j.issn1000-3304.2014.13461

    14. [14]

      朱庆松韩小进程春祖武长城 . 壳聚糖在4种咪唑型离子液体中溶解性的研究. 高分子学报, 2011, (10): 1173-1179. doi: 10.3724/SP.J.1105.2011.10272

    15. [15]

      王一夫万贺廷王丹王吉林王璐璐封瑞江 . Gemini型碱性离子液体的制备及其在吡啶功能化PVA阴离子膜中的应用. 高分子学报, 2018, (4): 541-552. doi: 10.11777/j.issn1000-3304.2017.17150

    16. [16]

      傅平郭鑫李灿 . 含有不同卤素阴离子的离子液体作为倒置聚合物太阳电池阴极界面层的研究. 高分子学报, 2018, (2): 266-272. doi: 10.11777/j.issn1000-3304.2018.17234

    17. [17]

      王文俊王维玮洪旭辉 . 纳米纤维素晶须的表面改性及其在环氧树脂中的应用. 高分子学报, 2015, (9): 1036-1043. doi: 10.11777/j.issn1000-3304.2015.15007

    18. [18]

      宋建会周凤王湘任毅张晓红郭鸣明乔金樑 . 纤维素/全硫化弹性纳米粒子复合膜的制备与性能. 高分子学报, 2017, (4): 676-682. doi: 10.11777/j.issn1000-3304.2017.16190

    19. [19]

      陈文帅于海鹏刘一星蒋乃翔陈鹏 . 木质纤维素纳米纤丝制备及形态特征分析. 高分子学报, 2010, (11): 1320-1326. doi: 10.3724/SP.J.1105.2010.09438

    20. [20]

      王能丁恩勇 . 酸碱处理后纳米微晶纤维素的热行为分析. 高分子学报, 2004, (6): 925-928.

  • Figure 1.  The schematic structure viewed along the axis paralleled to the channel (a), TEM image (b), and model of the worm-like inclusion complex of cellulose (c, f), and model of the IC estimated by the M06-2X/6-31 + G(d) level of theory (d) and HR TEM image (e) ((a − c) Reprinted with permission from Refs.[9], Copyright (2008) American Chemical Society; (d − f) Reprinted with permission from Ref.[10], Copyright (2014) American Chemical Society)

    Figure 2.  Cation/Macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy (Reprinted with permission from Ref.[11]; Copyright (2017) The Royal Society of Chemistry)

    Figure 3.  (a) Radical distribution functions (RDF, g(r)) of BzMe3N+, OH and water to the surface of a single cellulose chain. (b) The decomposed potential energy between cellulose and ions (or water) normalized by DP. Coulomb represents electrostatic interactions and Lennard-Jones represents vdW interactions. (c) Definition of the solvation shell for a single cellulose chain. Snapshots showing the sites of interaction between (d) cations and the cellulose chain and (e) between anions and the cellulose chain. (f) The spatial distribution functions of ions and solvent surrounding an anhydrous glucose backbone; red stands for water, violet for OH and blue for BzMe3N+, respectively (Reprinted with permission from Ref.[13]; Copyright (2018) The Royal Society of Chemistry) (The online version is colorful.)

    Figure 4.  Cellulose based functional materials fabricated from alkaline/urea aqueous ((c, d) Reprinted with permission from Ref.[8], Copyright (2016) Elsevier; (e) Reprinted with permission from Ref.[14], Copyright (2017) American Chemical Society; (f) Reprinted with permission from Ref.[15]; Copyright (2016) John Wiley & Sons, Inc.; (g) Reprinted with permission from Ref.[16], Copyright (2019) American Chemical Society; (h) Reprinted with permission from Ref.[19], Copyright (2018) American Chemical Society)

    Figure 5.  (a) Iridescent birefringence patterns of deformed TCHs under polarized light; (b) AFM phase image of TCH hydrogel with 160% strain; (c) Tensile stress-strain curves of LCH and TCHs; (d) 2D SAXS patterns of TCH hydrogels with 130% strain (Reprinted with permission from Ref.[14]; Copyright (2017) American Chemical Society) (The online version is colorful.)

    Figure 6.  Fabrication mechanism of the double-crosslinking cellulose hydrogel (upper); 3D Raman (a, b) of the as-prepared DC cellulose hydrogel; Compressive stress-strain curves (c) of the physically cross-linked cellulose hydrogel (PC), DC cellulose hydrogels with different ECH-to-AGU molar ratios, and chemically cross-linked cellulose hydrogel (CC) under compression. The inset is a local amplification figure of the initial part. Compressive stress-strain curves of the DC cellulose hydrogel (DC3-4) (Reprinted with permission from Ref.[15]; Copyright (2016) John Wiley & Sons, Inc.)

    Figure 7.  Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films (Reprinted with permission from Ref.[16]; Copyright (2019) American Chemical Society)

    Figure 8.  Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth (Reprinted with permission from Ref.[17]; Copyright (2018) American Chemical Society)

    Figure 9.  Mechanically strong multifilament fibers spun from cellulose solution via inducing formation of nanofibers (Reprinted with permission from Ref.[19]; Copyright (2018) American Chemical Society)

    Figure 10.  (a) The structure of the N/S-codoped carbon microsphere; The rate performances at various (b) current densities and (c) cycling performances (3000 cycles) at 500 mA g−1 of C-SP and NSC-SP; Charge-discharge curves of NSC-SP (d) at various current densities and (e) from selected cycles at 500 mA g−1 (Reprinted with permission from Ref.[21]; Copyright (2016) John Wiley & Sons, Inc.)

    Figure 11.  Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration: (a) The photograph and (b) SEM image of the PANI coated cellulose film; (c) The PNAI coated cell ulose films used for the nerve regeneration; (d) Thickness of myelin sheath and (e) the axon diameter percentage (Reprinted with permission from Ref.[22]; Copyright (2016) American Chemical Society)

    Figure 12.  Cellulose dissolution mechanism in ionic liquid (Reprinted with permission from Ref.[26]; Copyright (2018) American Chemical Society)

    Figure 13.  Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries (Reprinted with permission from Ref.[31]; Copyright (2017) American Chemical Society)

    Figure 14.  A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning (Reprinted with permission from Ref.[40]; Copyright (2019) The Royal Society of Chemistry)

    Figure 15.  (a) Photograph showing transparency and iridescence; SEM image showing left-handed periodic helical order; (b) PBG tunable in the range from near-UV to near-IR by salt addition and ultrasonic treatment; (c, d) Passive R-CPL, g indicated for each CNC-n; (e) Photographs showing angle-dependent iridescence of A 640; (f, g) Showcasing the potential of chiral photonic cellulose films for polarization-based encryption (Reprinted with permission from Ref.[57]; Copyright (2018) John Wiley & Sons, Inc.)

    Figure 16.  (a) Schematic of the ice-assisted hierarchical self-assembly approach of CNCs in anisotropic phases; (b) Schematic of the directional freeze-casting for CNCs suspension; (c) Photographs of the CNCs-ice monolith and CNCs aerogel. Note that the shape and dimensions of the aerogel can be controlled by use of a mold; (d) POM image of the long-range ordered silica aerogel which exhibits strong birefringence (Reprinted with permission from Ref.[59]; Copyright (2017) American Chemical Society)

    Figure 17.  (a) A comparison of the optimized CNC acid-base catalyst with silica-supported analogues by selectivity to the dehydration product and initial rates in aldol condensation reactions of 4NB and furfural. (b) Aldol condensation (AC) reaction scheme of furfural (furf) or 4-nitrobenzaldehyde (4NB) with excess acetone used for catalyst evaluation. The major products of each are the respective aldol (1) and dehydration (2) products while small quantities of crossed aldol adducts and side products were found (Reprinted with permission from Ref.[63]; Copyright (2019) American Chemical Society)

    Figure 18.  (a) Fabrication of the transparent nanocomposites starting from the preparation of CNs with different lengths and crystallinities and their Pickering-stabilized resin-in-water emulsions. (b) Fabrication of a μLA on the surface of the CN300 nanocomposite and thermal stability of the μLA on the nanocomposite compared with that on the neat resin film (Reprinted with permission from Ref.[65]; Copyright (2019) American Chemical Society)

    Figure 19.  (a) POM image of fibrous TCNCs suspension. Inset: photograph of TCNC membrane. (b) Illustration of hierarchical cholesteric structure and porous TCNC membrane fabricated with fibrous TCNCs by vacuum-assisted filtration. (c) SEM image of TCNC membrane. Inset: chloroform droplet on the TCNC membrane underwater. (d, e) Separation performance of TCNC membranes for oil/water emulsions. (f) Cycling performance of TCNC membrane (Reprinted with permission from Ref.[69]; Copyright (2017) Elsevier)

    Figure 20.  Pathway followed to fabricate fibrous MOF aerogels with the template of CNFs: (a) Schematic illustration of nanocellulose in wood; (b) TEMPO-exfoliation to produce carboxylic CNFs; (c) Ionic gelation of CNFs with ionic interactions between metal ions and carboxylic CNFs; (d) Template synthesis of MOF crystals around CNFs-M2+; (e) Freeze-drying for fibrous MOF aerogels (Reprinted with permission from Ref.[70]; Copyright (2018) American Chemical Society)

    Figure 21.  (a, b) SEM images of the natural wood: (a) cross-sectional view and (b) top view. Inset: Photograph of natural wood. (c, d) SEM images of the densified wood: (c) cross-sectional view and (d) top view. Inset: Photograph of the densified wood (Reprinted with permission from Ref.[73]; Copyright (2019) John Wiley & Sons, Inc.)

    Figure 22.  Cooling wood demonstrates passive daytime radiative cooling. Photos of a board of (a) natural wood and (b) cooling wood. (c) SEM image of the cooling wood showing the aligned wood channels. (d) SEM image of partially aligned cellulose nanofibers of the cooling wood. (e) Schematic showing the wood structure strongly scattering solar irradiance. (f) Schematic of infrared emission by molecular vibration of the cellulose functional groups. (g) Setup of the real-time measurement of the subambient cooling performance of the cooling wood (Reprinted with permission from Ref.[74]; Copyright (2019) The American Association for the Advancement of Science)

    Figure 23.  All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance (Reprinted with permission from Ref.[75]; Copyright (2017) The Royal Society of Chemistry)

    Figure 24.  (a) Schematic illustrating the microstructures and working principle of the bimodal porous balsa wood as an efficient, stable, scalable, environmentally friendly and low-cost evaporator for high salinity brine desalination. The wide vessel channels can ensure sufficient brine replenishment at the top surface during clean water vapor generation and effective transverse brine diffusion through pits and ray cells (from narrow tracheids to large vessel channels, as shown by the white curved arrows) can also help avoid salt accumulation on the surface. (b) Schematic showing the fouling mechanism of a control sample (PDMS/balsa), where severe deterioration of the device performance is attributed to the lack of sufficient brine replenishment caused by the PDMS blocking the wide vessel channels (Reprinted with permission from Ref.[78]; Copyright (2019) The Royal Society of Chemistry)

    Figure 25.  SEM images of (a) the BC and (b) the CNF aerogel, respectively. The insets in panels (a) and (b) are corresponding digital photographs; (c) The photographs showing the sequential compression process of the BC and the CNF aerogel; (d) The photograph of CNF aerogel in a hot flame (Reprinted with permission from Ref.[84]; Copyright (2016) American Chemical Society)

    Figure 26.  Preparation and in vivo evaluation of Au-BC electrodes. (a) Illustration of fabrication process of Au-BC electrode arrays; (b) The recording system consists of flexible flat cable and Au-BC electrodes; (c) The six recording sites on the cerebral cortex of a rat (Reprinted with permission from Ref.[92]; Copyright (2018) American Chemical Society)

  • 加载中
图(27)
计量
  • PDF下载量:  253
  • 文章访问数:  1180
  • HTML全文浏览量:  643
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计