ISSN 1000-3304CN 11-1857/O6

Citation: Bo Duan, Hu Tu and Li-na Zhang. Material Research Progress of the Sustainable Polymer-Cellulose[J]. Acta Polymerica Sinica, 2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160 shu

Material Research Progress of the Sustainable Polymer-Cellulose

Figures(27)

  • The “Green Chemistry” has become the strategy direction of research and development of the world in the 21th century. Cellulose, as the most abundant natural polymers, is a very important renewable resource and the main industrial raw material. The cellulose shows many great advances including biocompatibility, biodegradability, high structure stability. However, due to the large amounts of inter- and intra-hydrogen bonding among the cellulose molecules, the cellulose has a dense structure and is very hard to be processed through dissolution or melt, which limit the further exploitation of the cellulose resource. The traditional organic solution of the cellulose often has the problem of high cost and pollution. In recent decades, with the development of the “Green” solvent (alkaline/urea, ionic liquid, etc.) and the cellulose nanotechnology, the researchers have greatly expanded the cellulose application in biomedical, energy storage, optical fields in addition to the traditional spinning and papermaking industry. This review mainly introduces the new methods (“bottom to up” and “up to down”) for the exploitation of cellulose based materials in recent years through the following four sections: (1) the regenerated cellulose based materials from the “green” solution-alkaline/urea aqueous and ionic liquid; (2) the preparation and self-assembly of the nanocellulose; (3) the development and utilization of the wood nanotechnology; (4) bacterial cellulose based functional materials.
  • 加载中
    1. [1]

      Chandhuri S. The Wall Street Journal @ Statista Charts, 2018-12-12

    2. [2]

      Macarthur E. Science, 2017, 358(6365): 843 doi: 10.1126/science.aao6749

    3. [3]

      Science, 2017, 358(6369): 1362 − 1363

    4. [4]

      Lamb J B, Willis B L, Fiorenza E A, Couch C S, Howard R, Rader D N, True J D, Kelly L A, Ahmad A, Jompa J. Science, 2018, 359(6374): 460 − 462 doi: 10.1126/science.aar3320

    5. [5]

      People’s Daily Overseas Edition, 2019-07-05

    6. [6]

      Zhu Y, Romain C, Williams C K. Nature, 2016, 540: 354 − 362 doi: 10.1038/nature21001

    7. [7]

      Smaglik P. Nature, 2000, 406: 807 − 808 doi: 10.1038/35021181

    8. [8]

      Wang S, Lu A, Zhang L. Prog Polym Sci, 2016, 53: 169 − 206 doi: 10.1016/j.progpolymsci.2015.07.003

    9. [9]

      Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351 doi: 10.1021/ma801110g

    10. [10]

      Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L. J Phys Chem B, 2014, 118(34): 10250 − 10257 doi: 10.1021/jp501408e

    11. [11]

      Wang S, Sun P, Liu M, Lu A, Zhang L. Phys Chem Chem Phys, 2017, 19(27): 17909 − 17917 doi: 10.1039/C7CP02514A

    12. [12]

      Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L. Phys Chem Chem Phys, 2017, 19(11): 7486 − 7490 doi: 10.1039/C6CP08744B

    13. [13]

      Wang Y, Liu L, Chen P, Zhang L, Lu A. Phys Chem Chem Phys, 2018, 20(20): 14223 − 14233 doi: 10.1039/C8CP01268G

    14. [14]

      Ye D, Cheng Q, Zhang Q, Wang Y, Chang C, Li L, Peng H, Zhang L. ACS Appl Mater Interfaces, 2017, 9(49): 43154 − 43162 doi: 10.1021/acsami.7b14900

    15. [15]

      Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J. Adv Funct Mater, 2016, 26(34): 6279 − 6287 doi: 10.1002/adfm.201601645

    16. [16]

      Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, Zhang L. ACS Nano, 2019, 13(4): 4843 − 4853 doi: 10.1021/acsnano.9b02081

    17. [17]

      Ye D, Yang P, Lei X, Zhang D, Li L, Chang C, Sun P, Zhang L. Chem Mater, 2018, 30(15): 5175 − 5183 doi: 10.1021/acs.chemmater.8b01799

    18. [18]

      Ye D, Chang C, Zhang L. Biomacromolecules, 2019, 20(5): 1989 − 1995 doi: 10.1021/acs.biomac.9b00204

    19. [19]

      Zhu K, Qiu C, Lu A, Luo L, Guo J, Cong H, Chen F, Liu X, Zhang X, Wang H, Cai J, Fu Q, Zhang L. ACS Sustain Chem Eng, 2018, 6(4): 5314 − 5321 doi: 10.1021/acssuschemeng.8b00039

    20. [20]

      Qiu C, Zhu K, Yang W, Wang Y, Zhang L, Chen F, Fu Q. Biomacromolecules, 2018, 19(11): 4386 − 4395 doi: 10.1021/acs.biomac.8b01262

    21. [21]

      Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. Adv Energy Mater, 2016, 6(6): 1501929 doi: 10.1002/aenm.201501929

    22. [22]

      Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L. ACS Appl Mater Interfaces, 2016, 8(27): 17090 − 17097 doi: 10.1021/acsami.6b03555

    23. [23]

      Dai L, Zhu W, Lu J, Kong F, Si C, Ni Y. Green Chem, 2019, 21(19): 5222 − 5230 doi: 10.1039/C1039GC01975H

    24. [24]

      Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J Am Chem Soc, 2002, 124(18): 4974 − 4975 doi: 10.1021/ja025790m

    25. [25]

      Zhang H, Wu J, Zhang J, He J. Macromolecules, 2005, 38(20): 8272 − 8277 doi: 10.1021/ma0505676

    26. [26]

      Raghuwanshi V S, Cohen Y, Garnier G, Garvey C J, Russell R A, Darwish T, Garnier G. Macromolecules, 2018, 51(19): 7649 − 7655 doi: 10.1021/acs.macromol.8b01425

    27. [27]

      Liu H, Sale K L, Holmes B M, Simmons B A, Singh S. J Phys Chem B, 2010, 114(12): 4293 − 4301 doi: 10.1021/jp9117437

    28. [28]

      Rabideau B D, Ismail A E. J Phys Chem B, 2012, 116(32): 9732 − 9743 doi: 10.1021/jp305469p

    29. [29]

      Vitz J, Erdmenger T, Haensch C, Schubert U. Green Chem, 2009, 11(3): 417 − 424 doi: 10.1039/b818061j

    30. [30]

      Mazza M, Catana D A, Vaca-Garcia C, Cecutti C J C. Cellulose, 2009, 16(2): 207 − 215 doi: 10.1007/s10570-008-9257-x

    31. [31]

      Wan J, Zhang J, Yu J, Zhang J. ACS Appl Mater Interfaces, 2017, 9(29): 24591 − 24599 doi: 10.1021/acsami.7b06271

    32. [32]

      Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J F. Phys Chem Chem Phys, 2010, 12: 1941 − 1947 doi: 10.1039/b920446f

    33. [33]

      Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J. Chem Commun, 2012, 48: 6283 − 6285 doi: 10.1039/c2cc31483e

    34. [34]

      Zhang J, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J. Sci China Chem, 2016, 59: 1421 − 1429 doi: 10.1007/s11426-016-0269-5

    35. [35]

      Liu J, Zhang J, Zhang B, Zhang X, Xu L, Zhang J, He J, Liu C Y. Cellulose, 2016, 23: 2341 − 2348 doi: 10.1007/s10570-016-0967-1

    36. [36]

      Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J. Polym Int, 2015, 64: 963 − 970 doi: 10.1002/pi.4883

    37. [37]

      Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Mater Chem Front, 2017, 1: 1273 − 1290 doi: 10.1039/C6QM00348F

    38. [38]

      Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4(8): 4417 − 4423 doi: 10.1021/acssuschemeng.6b01034

    39. [39]

      Mi Q, Ma S-r, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4: 656 − 660 doi: 10.1021/acssuschemeng.5b01079

    40. [40]

      Nguyen N A, Kim K, Bowland C C, Keum J K, Kearney L T, André N, Labbé N, Naskar A K. Green Chem, 2019, 21(16): 4354 − 4367 doi: 10.1039/C9GC00774A

    41. [41]

      Yang S, Lu X, Zhang Y, Xu J, Xin J, Zhang S. Cellulose, 2018, 25(6): 3241 − 3254 doi: 10.1007/s10570-018-1785-4

    42. [42]

      Shamshina J L, Zavgorodnya O, Choudhary H, Frye B, Newbury N, Rogers R D. ACS Sustain Chem Eng, 2018, 6(11): 14713 − 14722 doi: 10.1021/acssuschemeng.8b03269

    43. [43]

      Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Biomacromolecules, 2008, 10(1): 162 − 165

    44. [44]

      Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv Mater, 2009, 21(16): 1595 − 1598 doi: 10.1002/adma.200803174

    45. [45]

      Ansari F, Salajková M, Zhou Q, Berglund L A. Biomacromolecules, 2015, 16: 3916 − 3924 doi: 10.1021/acs.biomac.5b01245

    46. [46]

      Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2018, 6(3): 2954 − 2960 doi: 10.1021/acssuschemeng.7b02363

    47. [47]

      Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(3): 2529 − 2534 doi: 10.1021/acssuschemeng.6b02867

    48. [48]

      Ci J, Cao C, Kuga S, Shen J, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(11): 9614 − 9618 doi: 10.1021/acssuschemeng.7b01970

    49. [49]

      Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules, 2007, 8(8): 2485 − 2491 doi: 10.1021/bm0703970

    50. [50]

      De France K J, Hoare T, Cranston E D. Chem Mater, 2017, 29(11): 4609 − 4631 doi: 10.1021/acs.chemmater.7b00531

    51. [51]

      Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Nat Nanotechnol, 2014, 10: 277 − 283

    52. [52]

      Xiong R, Yu S, Smith M J, Zhou J, Krecker M, Zhang L, Nepal D, Bunning T J, Tsukruk V V. ACS Nano, 2019, 13(8): 9047 − 9081 doi: 10.1021/acsnano.1029b03305

    53. [53]

      Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. Biomacromolecules, 2015, 16(5): 1489 − 1496 doi: 10.1021/acs.biomac.5b00188

    54. [54]

      Lundahl M J, Klar V, Wang L, Ago M, Rojas O J. Ind Eng Chem Res, 2017, 56(1): 8 − 19 doi: 10.1021/acs.iecr.6b04010

    55. [55]

      Richardson J J, Tardy B L, Guo J, Liang K, Rojas O J, Ejima H. ACS Sustain Chem Eng, 2019, 7(6): 6287 − 6294 doi: 10.1021/acssuschemeng.8b06713

    56. [56]

      Voisin H, Bergström L, Liu P, Mathew A P J N. Nanomaterials, 2017, 7(3): 57 doi: 10.3390/nano7030057

    57. [57]

      Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S X A, Xu Y. Adv Mater, 2018, 30(13): 1705948 doi: 10.1002/adma.201705948

    58. [58]

      Xu Y, Atrens A D, Stokes J R. Soft Matter, 2019, 15(8): 1716 − 1720 doi: 10.1039/C8SM02288G

    59. [59]

      Chu G, Qu D, Zussman E, Xu Y. Chem Mater, 2017, 29(9): 3980 − 3988 doi: 10.1021/acs.chemmater.7b00361

    60. [60]

      Hiratani T, Kose O, Hamad W Y, MacLachlan M J. Mater Horiz, 2018, 5(6): 1076 − 1081 doi: 10.1039/C8MH00586A

    61. [61]

      Kaushik M, Basu K, Benoit C, Cirtiu C M, Vali H, Moores A. J Am Chem Soc, 2015, 137(19): 6124 − 6127 doi: 10.1021/jacs.5b02034

    62. [62]

      Gu J, Hu C, Zhang W, Dichiara A B. Appl Catal B, 2018, 237: 482 − 490 doi: 10.1016/j.apcatb.2018.06.002

    63. [63]

      Ellebracht N C, Jones C W. ACS Catal, 2019, 9(4): 3266 − 3277 doi: 10.1021/acscatal.8b05180

    64. [64]

      Qin X, Xia W, Sinko R, Keten S. Nano Lett, 2015, 15(10): 6738 − 6744 doi: 10.1021/acs.nanolett.5b02588

    65. [65]

      Biswas S K, Tanpichai S, Witayakran S, Yang X, Shams M I, Yano H. ACS Nano, 2019, 13(2): 2015 − 2023

    66. [66]

      Zhu L, Zhou X, Liu Y, Fu Q. ACS Appl Mater Interfaces, 2019, 11(13): 12968 − 12977 doi: 10.1021/acsami.9b00136

    67. [67]

      Wu K, Fang J, Ma J, Huang R, Chai S, Chen F, Fu Q. ACS Appl Mater Interfaces, 2017, 9(35): 30035 − 30045 doi: 10.1021/acsami.7b08214

    68. [68]

      Yang W, Zhang Y, Liu T, Huang R, Chai S, Chen F, Fu Q. ACS Sustain Chem Eng, 2017, 5(10): 9102 − 9113 doi: 10.1021/acssuschemeng.7b02012

    69. [69]

      Cheng Q, Ye D, Chang C, Zhang L. J Membr Sci, 2017, 525: 1 − 8 doi: 10.1016/j.memsci.2016.11.084

    70. [70]

      Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. ACS Nano, 2018, 12(5): 4462 − 4468 doi: 10.1021/acsnano.8b00566

    71. [71]

      Zhu H, Yang X, Cranston E D, Zhu S. Adv Mater, 2016, 28(35): 7652 − 7657 doi: 10.1002/adma.201601351

    72. [72]

      Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste U H, Bruck H A, Zhu J Y, Vellore A, Li H, Minus M L, Jia Z, Martini A, Li T, Hu L. Nature, 2018, 554(7691): 224 − 228 doi: 10.1038/nature25476

    73. [73]

      Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, Mi R, Sunderland P B, Hu L. Adv Funct Mater, 2019, 29(14): 1807444 doi: 10.1002/adfm.201807444

    74. [74]

      Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. Science, 2019, 364(6442): 760 − 763 doi: 10.1126/science.aau9101

    75. [75]

      Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. Energy Environ Sci, 2017, 10: 538 − 545 doi: 10.1039/C6EE03716J

    76. [76]

      Song H, Xu S, Li Y, Dai J, Hu L. Adv Energy Mater, 2017, 8(4): 1701203

    77. [77]

      Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. Energy Environ Sci, 2018, 11(11): 3231 − 3237 doi: 10.1039/C8EE01468J

    78. [78]

      He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren Z J, Yang B, Das S, Hu L. Energy Environ Sci, 2019, 12(5): 1558 − 1567 doi: 10.1039/C9EE00945K

    79. [79]

      Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, Jia C, Chen C, Hitz E, Siddhartha D, Yang R, Hu L. Adv Funct Mater, 2018, 28(16): 1707134 doi: 10.1002/adfm.201707134

    80. [80]

      Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey S D, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L. Adv Mater, 2017, 29(44): 1704107 doi: 10.1002/adma.201704107

    81. [81]

      Kuang Y, Chen C, He S, Hitz E M, Wang Y, Gan W, Mi R, Hu L. Adv Mater, 2019, 31(23): 1900498

    82. [82]

      Picheth G F, Pirich C L, Sierakowski M R, Woehl M A, Sakakibara C N, de Souza C F, Martin A A, da Silva R, de Freitas R A. Int J Biol Macromol, 2017, 104: 97 − 106 doi: 10.1016/j.ijbiomac.2017.05.171

    83. [83]

      Foresti M L, Vázquez A, Boury B. Carbohydr Polym, 2017, 157: 447 − 467 doi: 10.1016/j.carbpol.2016.09.008

    84. [84]

      Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Acc Chem Res, 2016, 49(1): 96 − 105 doi: 10.1021/acs.accounts.5b00380

    85. [85]

      Chen Z, Hu Y, Zhuo H, Liu L, Jing S, Zhong L, Peng X, Sun R C. Chem Mater, 2019, 31: 3301 − 3312 doi: 10.1021/acs.chemmater.9b00259

    86. [86]

      Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. Adv Mater, 2017, 29(35): 1702498 doi: 10.1002/adma.201702498

    87. [87]

      Liang H W, Wu Z Y, Chen L F, Li C, Yu S H. Nano Energy, 2015, 11: 366 − 376 doi: 10.1016/j.nanoen.2014.11.008

    88. [88]

      Guan Q F, Han Z M, Luo T T, Yang H B, Liang H W, Chen S M, Wang G S, Yu S H J N S R. Natl Sci Rev, 2019, 6(1): 64 − 73 doi: 10.1093/nsr/nwy144

    89. [89]

      Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G. Small, 2018, 14(7): 1702582 doi: 10.1002/smll.201702582

    90. [90]

      Geisel N, Clasohm J, Shi X, Lamboni L, Yang J, Mattern K, Yang G, Schäfer K H, Saumer M. Small, 2016, 12(39): 5407 − 5413

    91. [91]

      Schaffner M, Rühs P A, Coulter F, Kilcher S, Studart A. Sci Adv, 2017, 3: 6804 doi: 10.1126/sciadv.aao6804

    92. [92]

      Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. ACS Appl Mater Interfaces, 2018, 10(39): 33049 − 33059 doi: 10.1021/acsami.8b12083

    93. [93]

      Shi Z, Gao X, Ullah M W, Li S, Wang Q, Yang G. Biomaterials, 2016, 111: 40 − 54 doi: 10.1016/j.biomaterials.2016.09.020

    94. [94]

      Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv Energy Mater, 2014, 4(10): 1301655 doi: 10.1002/aenm.201301655

    95. [95]

      Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy, 2014, 9: 309 − 317 doi: 10.1016/j.nanoen.2014.08.004

    96. [96]

      Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Small, 2017, 13(27): 1700130 doi: 10.1002/smll.201700130

    97. [97]

      Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Talanta, 2015, 131: 243 − 248 doi: 10.1016/j.talanta.2014.07.027

  • 加载中
    1. [1]

      LI WendiRONG JianhuaLIN ZhidanZHANG Xiuju . PREPARATION AND CHARACTERIZATION OF BACTERIAL CELLULOSE REINFORCED PVA/PVP HYDROGELS. Acta Polymerica Sinica, 2012, (4): 357-364. doi: 10.3724/SP.J.1105.2012.11175

    2. [2]

      ZHANG Jing-JingRONG Jian-HuaLI Wen-DiLIN Zhi-DanZHANG Xiu-Ju . PREPARATION AND CHARACTERIZATION OF BACTERIAL CELLULOSE/POLYACRYLAMIDE HYDROGEL. Acta Polymerica Sinica, 2011, (6): 602-607. doi: 10.3724/SP.J.1105.2011.10137

    3. [3]

      Li-na YueYu-dong ZhengJia-bin LuanYi YuYa-jie XieJian Wu . Effects of Water Content on Preparation and Properties of Bacterial Cellulose/Polyaniline Composite Gel-membranes. Acta Polymerica Sinica, 2014, (9): 1228-1237. doi: 10.11777/j.issn1000-3304.2014.13478

    4. [4]

      Jin-ming ZhangJin WuJian YuXiao-cheng ZhangQin-yong MiJun Zhang . Processing and Functionalization of Cellulose with Ionic Liquids. Acta Polymerica Sinica, 2017, (7): 1058-1072. doi: 10.11777/j.issn1000-3304.2017.17066

    5. [5]

      Jing ChenJin-ming ZhangWei-wei ChenYe FengJun Zhang . HOMOGENEOUS SYNTHESIS OF CELLULOSE NAPHTHOATE IN AN IONIC LIQUID. Acta Polymerica Sinica, 2013, (10): 1235-1240. doi: 10.3724/SP.J.1105.2013.13168

    6. [6]

      LV Xiao-WenLI LuLIN Zhang-BiCUI Shu-Xun . FORMATION MECHANISM OF IONIC LIQUID-RECONSTITUTED CELLULOSE HYDROGELS AND THEIR APPLICATION IN GEL ELECTROPHORESIS. Acta Polymerica Sinica, 2011, (9): 1026-1032. doi: 10.3724/SP.J.1105.2011.10353

    7. [7]

      Hong-zhi LiuYu-fei ChenBi-yao GengJing RuChun-gui DuChun-de JinJing-quan Han . Research Progress in the Cellulose based Aerogel-type Oil Sorbents. Acta Polymerica Sinica, 2016, (5): 545-559. doi: 10.11777/j.issn1000-3304.2016.15328

    8. [8]

      Di-shun ZhaoLin-lin FuJuan ZhangHe LiMeng-shuai LiuJiang-tao FuWei Wang . STUDY ON THE DISSOLUTION OF CELLULOSE IN N-ALLYLPYRIDINIUM CHLORIDE IONIC LIQUID AND CO-SOLVENT COMPOSITES. Acta Polymerica Sinica, 2012, (9): 937-942. doi: 10.3724/SP.J.1105.2012.11407

    9. [9]

      Chao-li WangXiao-ling HuPing GuanDan-feng WuLi-wei QianJi LiRen-yuan Song . Lysozyme Molecular Imprinted Membranes with Ionic Liquids as Functional Monomer. Acta Polymerica Sinica, 2015, (3): 259-265. doi: 10.11777/j.issn1000-3304.2015.14224

    10. [10]

      WANG NengDING EnyongCHENG Rongshi . THE SURFACE MODIFICATION OF NANOCRYSTALLINE CELLULOSE. Acta Polymerica Sinica, 2006, (8): 982-987.

    11. [11]

      Yu HuHui SunBiao YangBin HuangGuo-zhi Xu . Preparation and Properties of Poly(vinyl alcohol)/Hemicellulose/Nanocrystalline Cellulose Composite Film. Acta Polymerica Sinica, 2016, (11): 1615-1620. doi: 10.11777/j.issn1000-3304.2016.16140

    12. [12]

      Xiao-qian ZhangXuan ZhouYing-juan SunLi-na YueYong-xiang ShiKe XuZi-xi LuoYi-bo Wu . Cationic Polymerization of p-Methylstyrene in Ionic Lquids Media. Acta Polymerica Sinica, 2019, 50(4): 375-383. doi: 10.11777/j.issn1000-3304.2018.18239

    13. [13]

      Hui-ying ChenShu-biao ZhangXiao-jun PengShao-hui CuiYi-nan ZhaoChuan-min ZhangYing Han . Homogeneous Graft of Chitosan with Polyethylenimine in Ion Liquid and Its Application in Gene Delivery. Acta Polymerica Sinica, 2014, (8): 1089-1095. doi: 10.11777/j.issn1000-3304.2014.13461

    14. [14]

      ZHU Qing-SongHAN Xiao-JinCHENG Chun-ZuWU Chang-Cheng . STUDY ON DISSOLUBILITY OF CHITOSAN IN FOUR KINDS OF IMIDAZOLE-BASED IONIC LIQUIDS. Acta Polymerica Sinica, 2011, (10): 1173-1179. doi: 10.3724/SP.J.1105.2011.10272

    15. [15]

      Yi-fu WangHe-ting WanDan WangJi-lin WangLu-lu WangRui-jiang Feng . Synthesis of Gemini Basic Ionic Liquids and Its Application for Anion Exchange Membranes Based on Pyridine Functionalized Poly(vinyl alcohol). Acta Polymerica Sinica, 2018, (4): 541-552. doi: 10.11777/j.issn1000-3304.2017.17150

    16. [16]

      Ping FuXin GuoCan Li . Ionic Liquids Containing Different Halogen Anions as Cathode Interlayer for Inverted Polymer Solar Cells. Acta Polymerica Sinica, 2018, (2): 266-272. doi: 10.11777/j.issn1000-3304.2018.17234

    17. [17]

      Wen-jun WangWei-wei WangXu-hui Hong . Surface Modification of Cellulose Nanowhiskers and Application in Epoxy Resin. Acta Polymerica Sinica, 2015, (9): 1036-1043. doi: 10.11777/j.issn1000-3304.2015.15007

    18. [18]

      Jian-hui SongFeng ZhouXiang WangYi RenXiao-hong ZhangMing-ming GuoJin-liang Qiao . Preparation and Properties of Cellulose/Full-vulcanized Elastomeric Nanoparticles Composite Films. Acta Polymerica Sinica, 2017, (4): 676-682. doi: 10.11777/j.issn1000-3304.2017.16190

    19. [19]

      CHEN Wen-ShuaiYU Hai-Peng