ISSN 1000-3304CN 11-1857/O6

长碳链聚酰胺及其共聚物的拉伸诱导结晶

王莉莉 朱平 董侠 王笃金

引用本文: 王莉莉, 朱平, 董侠, 王笃金. 长碳链聚酰胺及其共聚物的拉伸诱导结晶[J]. 高分子学报, 2020, 51(1): 1-11. doi: 10.11777/j.issn1000-3304.2020.19165 shu
Citation1:  Li-li Wang, Ping Zhu, Xia Dong and Du-jin Wang. Strain-induced Crystallization of Long Chain Polyamide and Its Copolymers[J]. Acta Polymerica Sinica, 2020, 51(1): 1-11. doi: 10.11777/j.issn1000-3304.2020.19165 shu

长碳链聚酰胺及其共聚物的拉伸诱导结晶

    作者简介: 董侠,女,1973年生. 中国科学院化学研究所研究员,博士生导师. 2001年于东华大学获得博士学位,2001 ~ 2003年在中国科学院化学研究所从事博士后研究,2009 ~ 2010年在美国阿克伦大学做访问学者. 从事长碳链聚酰胺等高分子材料的聚合关键技术、结构与性能、材料加工及改性的应用基础研究与工业化转化,在生物发酵法原料来源的长碳链聚酰胺及其弹性体材料的研究与工程化领域取得重要进展. 已发表学术论文150余篇,授权中国发明专利41项,曾获上海市科技进步一等奖(2017年)、中国化学会高分子科学创新论文奖(2017年)、中国科学院科技促进发展奖科技贡献二等奖(2014年)、北京市科学技术一等奖(2009年)、冯新德高分子奖(2009,2019年)等奖励;
    通讯作者: 董侠, E-mail: xiadong@iccas.ac.cn
摘要: 长碳链聚酰胺(LCPA)作为聚酰胺的特殊品种,较长的亚甲基链和极性酰胺基团使其兼具聚烯烃和聚酰胺的双重特性. 在加工或使用过程中,拉伸诱导结晶现象对长碳链聚酰胺及其共聚物的强度和弹性行为具有重要影响,深入认识其在外场下的微观结构响应对该材料的设计及制备具有重要意义. 围绕拉伸诱导结晶作用,该专论主要基于本团队2010年以来在长碳链聚酰胺及其共聚物的拉伸诱导结晶工作,并综述了国内外的相关研究,涉及拉伸诱导结晶现象、拉伸诱导结晶的影响因素、拉伸诱导结晶与力学性能的构效关系及拉伸诱导结晶的表征方法等方面.

English

    1. [1]

      Chen L, Chen W, Zhou W M, Li J, Liu Y P, Qi Z M, Li L B. J Appl Polym Sci, 2014, 131: 8688 − 8696

    2. [2]

      Cui X W, Yan D Y. J Polym Sci, Part B: Polym Phys, 2004, 42: 4017 − 4022 doi: 10.1002/polb.20266

    3. [3]

      Rinderknecht S, Brisson J. Macromolecules, 1999, 32: 8509 − 8516 doi: 10.1021/ma9808575

    4. [4]

      Jones N A, Atkins E D T, Hill M J, Cooper S J, Franco L. Macromolecules, 1996, 29: 6011 − 6018 doi: 10.1021/ma9603490

    5. [5]

      Jones N A, Atkins E D T, Hill M J, Cooper S J, Franco L. Macromolecules, 1997, 30: 3569 − 3578 doi: 10.1021/ma961494g

    6. [6]

      Jones N A, Atkins E D T, Hill M J, Cooper S J, Franco L. Polymer, 1997, 38: 2689 − 2699 doi: 10.1016/S0032-3861(97)85603-0

    7. [7]

      Jolly L, Tidu A, Heizmann J J, Bolle B. Polymer, 2002, 43: 6839 − 6851 doi: 10.1016/S0032-3861(02)00486-X

    8. [8]

      Dasgupta S, Hammond W B, Goddard W A. J Am Chem Soc, 1996, 118: 12291 − 12301 doi: 10.1021/ja944125d

    9. [9]

      Flory P J. J Chem Phys, 1947, 15: 397 − 408 doi: 10.1063/1.1746537

    10. [10]

      Brüning K, Schneider K, Roth S V, Heinrich G. Macromolecules, 2012, 45: 7914 − 7919 doi: 10.1021/ma3011476

    11. [11]

      Tosaka M. Macromolecules, 2009, 42: 6166 − 6174 doi: 10.1021/ma900954c

    12. [12]

      Ikeda Y, Yasuda Y, Hijikata K, Tosaka M, Kohjiya S. Macromolecules, 2008, 41: 5876 − 5884 doi: 10.1021/ma800144u

    13. [13]

      Candau N, Laghmach R, Chazeau L, Chenal J M, Gauthier C, Biben T, Munch E S. Macromolecules, 2014, 47: 5815 − 5824 doi: 10.1021/ma5006843

    14. [14]

      Poompradub S, Tosaka M, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao B S. J Chem Phys, 2005, 97: 1035291 − 1035299

    15. [15]

      Tosaka M, Murakami S, Poompradub S, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao B S. Macromolecules, 2004, 37: 3299 − 3309 doi: 10.1021/ma0355608

    16. [16]

      Toki S, Sics I, Hsiao B S, Tosaka M, Poompradub S, Ikeda Y, Kohjiya S. Macromolecules, 2005, 38: 7064 − 7073 doi: 10.1021/ma050465f

    17. [17]

      Wang L L, Dong X, Huang M M, Wang D J. Polymer, 2016, 97: 217 − 225 doi: 10.1016/j.polymer.2016.05.038

    18. [18]

      Kawakami D, Hsiao B S, Burger C, Ran S F, Avila-Orta C, Sics I, Kikutani T. Macromolecules, 2005, 38: 91 − 103 doi: 10.1021/ma049333x

    19. [19]

      Kawakami D, Ran S F, Burger C, Avila-Orta C, Sics I, Chu B, Hsiao B S. Macromolecules, 2006, 39: 2909 − 2920 doi: 10.1021/ma052589y

    20. [20]

      Yang X N, Tan S S, Li G, Zhou E. Macromolecules, 2001, 34: 5936 − 5942 doi: 10.1021/ma002091q

    21. [21]

      Vinken E, Terry A E, Hoffmann S, Vanhaecht B, Koning C E, Rastogi S. Macromolecules, 2006, 39: 2546 − 2552 doi: 10.1021/ma0526903

    22. [22]

      Feldman A Y, Wachtel E, Vaughan G B M, Weinberg A, Marom G. Macromolecules, 2006, 39: 4455 − 4459 doi: 10.1021/ma060487h

    23. [23]

      Yan D Y, Li Y J, Zhu X Y. Macromol Rapid Commun, 2000, 21: 1040 − 1043 doi: 10.1002/1521-3927(20001001)21:15<1040::AID-MARC1040>3.0.CO;2-X

    24. [24]

      Murthy N S. J Polym Sci, Part B: Polym Phys, 2006, 44: 1763 − 1782 doi: 10.1002/polb.20833

    25. [25]

      Brill R. J Prakt Chem, 1942, 161: 49 − 64 doi: 10.1002/prac.19421610104

    26. [26]

      Wang L, Dong X, Huang M M, Muller A J, Wang D. Polymer, 2017, 117: 231 − 242 doi: 10.1016/j.polymer.2017.04.038

    27. [27]

      Wang D L, Shao C G, Zhao B J, Bai L G, Wang X, Yan T Z, Li J J. Macromolecules, 2010, 43: 2406 − 2412 doi: 10.1021/ma1000282

    28. [28]

      Song J B, Zhang H L, Ren M Q, Chen Q Y, Sun X H, Wang S Y, Zhang H F. Macromol Rapid Commun, 2005, 26: 487 − 490 doi: 10.1002/marc.200400549

    29. [29]

      Zhu P, Dong X, Wang D J. Macromolecules, 2017, 50: 3911 − 3921 doi: 10.1021/acs.macromol.6b02747

    30. [30]

      Sheth J, Xu J, Wilkes G. Polymer, 2003, 44: 743 − 756 doi: 10.1016/S0032-3861(02)00798-X

    31. [31]

      Konyukhova E V, Neverov V M, Godovsky Y K, Chvalun S N, Soliman M. Macromol Mater Eng, 2002, 287: 250 − 265 doi: 10.1002/1439-2054(20020401)287:4<250::AID-MAME250>3.0.CO;2-Z

    32. [32]

      Yeh F, Hsiao B S, Sauer B B, Michel S, Siesler H W. Macromolecules, 2003, 36: 1940 − 1954 doi: 10.1021/ma0214456

    33. [33]

      Sauer B B, Mclean R S, Brill D J, Londono D J. J Polym Sci, Part B: Polym Phys, 2002, 40: 1727 − 1740 doi: 10.1002/polb.10234

    34. [34]

      Zhu P, Dong X, Huang M M, Wang L L, Qi S X, Wang D J. J Polym Sci, Part B: Polym Phys, 2018, 56: 855 − 864 doi: 10.1002/polb.24600

    35. [35]

      Armstrong S, Freeman B, Hiltner A, Baer E. Polymer, 2012, 53: 1383 − 1392 doi: 10.1016/j.polymer.2012.01.037

    36. [36]

      Jenkins M J, Cao Y, Kukureka S N. Polym Adv Technol, 2006, 17: 1 − 5

    37. [37]

      Konyukhova E V, Buzin A I, Godovsky Y K. Thermochim Acta, 2002, 391: 271 − 277 doi: 10.1016/S0040-6031(02)00189-2

    38. [38]

      Wang D X, Lyon R E, Farris R J. Chinese J Polym Sci, 1987, 3: 274 − 283

    39. [39]

      Schmidt A, Veeman W S, Litvinov V M, Gabrielse W. Macromolecules, 1998, 31: 1652 − 1660 doi: 10.1021/ma9714676

    40. [40]

      Saito H, Aoyanagi Y, Mihara T, Tanaka T, Higuchi T, Morita H, Jinnai H. Polymer, 2017, 116: 556 − 564 doi: 10.1016/j.polymer.2017.01.072

    41. [41]

      Shimizu K, Miyata T, Nagao T, Kumagai A, Jinnai H. Polymer, 2019, 181: 121789 doi: 10.1016/j.polymer.2019.121789

    1. [1]

      王莉莉董侠朱平张秀芹王笃金 . 长碳链聚醚酰胺弹性纤维开发及其弹性机理. 高分子学报, 2017, (5): 752-760. doi: 10.11777/j.issn1000-3304.2017.16317

    2. [2]

      胡蓉辛德华秦安军唐本忠 . 聚集诱导发光聚合物. 高分子学报, 2018, (2): 132-144. doi: 10.11777/j.issn1000-3304.2018.17280

    3. [3]

      李宏伟张舒航 . 聚2-丙烯酸甲酯-1-甲基吡啶盐的合成与表征及其在活性染料无盐染色中的应用. 高分子学报, 2014, (10): 1413-1419. doi: 10.11777/j.issn1000-3304.2014.14034

    4. [4]

      蔡志锋王庆印刘绍英王公应 . 用于合成聚对苯二甲酸乙二醇酯的KF/Al2O3催化剂研究. 高分子学报, 2018, 0(9): 1184-1193. doi: 10.11777/j.issn1000-3304.2018.18014

    5. [5]

      李其易雷霆姚泽凡王婕妤裴坚 . 共轭高分子的多级组装. 高分子学报, 2019, 50(1): 1-12. doi: 10.11777/j.issn1000-3304.2018.18223

    6. [6]

      黄培耿洪斌程茹王晓东时钧 . 长链聚酰胺酸的热环化动力学. 高分子学报, 2004, (2): 256-262.

    7. [7]

      高霞苏允兰谢保全傅东升王笃金 . 长链正烷烃的受限结晶研究进展. 高分子学报, 2014, (1): 22-30. doi: 10.3724/SP.J.1105.2014.13290

    8. [8]

      钱人元漆宗能吴林生 . 晶区分子链构象及拉伸取向对聚酰胺-6分子运动的影响. 高分子学报, 1965, 7(5): 291-296.

    9. [9]

      郑平李淑婕 . 聚酰胺-胺的合成与表征. 高分子学报, 1989, (2): 251-253.

    10. [10]

      张振江唐涛祝丽荔魏凯乔磊 . 长链支化聚丙烯结晶行为及发泡性能研究. 高分子学报, 2016, (4): 457-463. doi: 10.11777/j.issn1000-3304.2016.15227

    11. [11]

      孙本惠金日光 . 用GPC-级分特性粘数法表征高顺式-1,4聚丁二烯的长链支化. 高分子学报, 1983, (5): 335-341.

    12. [12]

      陈寿羲金永泽 . 刚性链芳香聚酰胺片晶结构. 高分子学报, 1995, (2): 212-216.

    13. [13]

      В.В.Корщак吴报铢 . 合成杂链聚酰胺方面的成就. 高分子学报, 1959, 3(2): 43-48.

    14. [14]

      邓澧儒谌福特 . 聚酰胺-6纤维拉伸特性的温度-速度换算. 高分子学报, 1965, 7(5): 297-303.

    15. [15]

      卢子兴黄筑平王仁 . 开孔泡沫塑料率相关的拉伸力学性能及本构关系. 高分子学报, 1997, (4): 387-392.

    16. [16]

      陈群杨光王源身余学海黑子弘道安藤勋 . 固体变温核磁共振碳谱研究主链型热致液晶聚醚聚氨酯弹性体. 高分子学报, 1996, (4): 509-512.

    17. [17]

      王葆仁 . 聚酰胺. 高分子学报, 1957, 1(4): 179-195.

    18. [18]

      王刚王柯 . 热拉伸诱导聚乳酸立构复合晶的研究. 高分子学报, 2018, 0(9): 1221-1227. doi: 10.11777/j.issn1000-3304.2018.18011

    19. [19]

      苗艳茹徐伟箭刘美华俞霞朱林英熊远钦 . 末端带有溴甲基基团的柱状树枝化聚酰胺的合成与表征. 高分子学报, 2008, (3): 292-296. doi: 10.3724/SP.J.1105.2008.00292

    20. [20]

      张健后晓淮 . 主链含硅的芳族聚酰胺的合成及其气体选择透过性能. 高分子学报, 1995, (2): 182-188.

  • Figure 1.  Schematic diagrams showing lamella progress of PA1012 during deformation at 100 °C (The first row clearly illustrates SAXS patterns and the second row indicates the gradual changes of lamella under stretching.) (Reprinted with permission from Ref.[17]; Copyright (2016) Elsevier Ltd.)

    Figure 2.  fHS, fSS, and fSIC versus true strain for 35D and 40D (Reprinted with permission from Ref.[34]; Copyright (2018) John Wiley and Sons)

    Figure 3.  (a) The heating runs of PA1012 predeformed to maximum strain at various temperatures (Reprinted with permission from Ref.[17]; Copyright (2016) Elsevier Ltd.); (b) The heating runs of PA1012 predeformed to different strains at 100 °C (Reprinted with permission from Ref.[17]; Copyright (2016) Elsevier Ltd.); (c) The heating runs of PA1012/PA612 50/50 mixtures predeformed to different strains at 100 °C (Reprinted with permission from Ref.[26]; Copyright (2017) Elsevier Ltd.); (d) The stress-strain curves of PA1012/PA612 mixtures with various blend ratios at 100 °C (Reprinted with permission from Ref.[26]; Copyright (2017) Elsevier Ltd.); (e) Schematic diagrams indicating deformation-induced lamella changes of PA1012 at various temperatures (The denotations of the symbols are same with Fig. 1.) (Reprinted with permission from Ref.[17]; Copyright (2016) Elsevier Ltd.)

    Figure 4.  (a) True stress versus λ2 – 1/λ and representative WAXD patterns during deformation of A600G2000. Stretching is along the horizontal direction. (b) 1D integrated WAXD curves at λ = 1, 5.5, unloaded state, annealed state and the difference between the latter two states. (c, d) Development of absorbance around 1009 cm–1 and correlation curve of the true stress versus fSIC of PTMO under large strains (Reprinted with permission from Ref.[29]; Copyright (2017) American Chemical Society)

    Figure 5.  WAXD and SAXS patterns of a ploy(ether-b-amide) elastomer (A600G2000) in the loaded state (λ = 5.5, true strain 1.7), retraction from it and then annealed. (Reprinted with permission from Ref.[29]; Copyright (2017) American Chemical Society)

    Figure 6.  Selected WAXD/SAXS patterns of 35D with numbering codes on the right top and the true strain values on the left bottom. Even-numbering patterns correspond to the stretched state at the maximum strain of each cycle, and odd-numbering patterns correspond to the unloaded states. The stretching direction is horizontal. (Reprinted with permission from Ref. [34]; Copyright (2018) John Wiley and Sons)

    Figure 7.  (a) Selected WAXD/SAXS patterns of H33D at specific states. The stretching direction is horizontal. (b) In situ FTIR spectra of the undeformed, loaded and unloaded states.

    Figure 8.  (a) 13C-CPMAS spectra showing the OCH2 groups of the unstretched sample A2000/60 at 25 °C (A), the stretched (to break) sample A2000/60-b at 25 °C (B), and the unstretched sample A2000/60 at −30 °C (C). (Reprinted with permission from Ref.[10]; Copyright (1998) American Chemical Society); (b) Parallel and perpendicular FTIR spectra at strain of 0% and 500%, and orientation function f of different bands and crystallinity index variations as a function of strain (Reprinted from Ref.[17]; Copyright (2016), with permission from Elsevier Ltd.); (c) AFM moderate tapping force phase data for a Pebax 3533 film surface under different elongations. High phases corresponding to hard domains are white. The topographical data exhibit trends similar to those of the phase data and are not shown here. The stretch ratios are 1.0 and 3.2X. The scan boxes are 1000 nm × 1000 nm for each plot, and the z scale is 0 − 25°. The stress direction is close to vertical. (Reprinted with permission from Ref.[33]; Copyright (2002) John Wiley and Sons)

  • 加载中
图(9)
计量
  • PDF下载量:  100
  • 文章访问数:  782
  • HTML全文浏览量:  419
  • 引证文献数: 0
文章相关
  • 通讯作者:  董侠, xiadong@iccas.ac.cn
  • 收稿日期:  2019-09-10
  • 修稿日期:  2019-10-06
  • 刊出日期:  2020-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计