ISSN 1000-3304CN 11-1857/O6

精准宏观超分子组装

成梦娇 石峰

引用本文: 成梦娇, 石峰. 精准宏观超分子组装[J]. 高分子学报, 2020, 51(6): 598-608. doi: 10.11777/j.issn1000-3304.2020.20016 shu
Citation:  Meng-jiao Cheng and Feng Shi. Precise Macroscopic Supramolecular Assembly[J]. Acta Polymerica Sinica, 2020, 51(6): 598-608. doi: 10.11777/j.issn1000-3304.2020.20016 shu

精准宏观超分子组装

    作者简介: 成梦娇,女,1987年生. 北京化工大学材料科学与工程学院副教授、博士生导师. 2010年和2015年获得北京化工大学学士和博士学位. 获得CSC-DAAD中德联合博士后项目资助,于2015 ~ 2016年赴德国明斯特大学从事博士后研究. 入选北京化工大学青年英才百人计划. 主要研究方向为精准宏观超分子组装,致力于组装界面调控和组装途径设计,实现宏观超分子有序结构的制备,发展其在组织工程支架领域的应用;石峰,男,1978年生. 北京化工大学材料科学与工程学院教授、博士生导师. 2004年获得吉林大学学士和硕士学位,2007年获得清华大学博士学位,研究生期间曾赴色列耶路撒冷希伯莱大学、德国明斯特大学展开合作研究. 2007 ~ 2008年在德国马普高分子所进行博士后研究工作. 入选教育部首届青年长江学者,“万人计划”科技领军人才,获得国家自然科学基金委杰出青年基金、优秀青年基金、北京市杰出青年基金、教育部霍英东基金、教育部新世纪人才和北京市新星计划等. 主要研究方向为宏观超分子组装,致力于阐释材料领域的界面-界面相互作用,发展制备体相超分子材料的新途径;
    通讯作者: 成梦娇, E-mail: chengmj@mail.buct.edu.cn 石峰, E-mail: shi@mail.buct.edu.cn
摘要: 宏观超分子组装是近年来超分子科学的新兴研究方向,其本质是表面修饰有大量超分子官能团的宏观构筑基元的界面组装. 由于组装过程中存在较多热力学亚稳态,导致最终产生大量非精准组装体,整体结构有序度低,制约了其在高性能超分子材料方面的应用,因此,如何实现精准宏观超分子组装,构建有序超分子结构,成为了制约宏观超分子组装发展的瓶颈问题之一. 本专论从宏观超分子组装的概念与组装机制出发,根据宏观超分子组装过程的特点,分析阐述了组装体中存在不同界面匹配度的热力学亚稳态的问题;继而,从能量面的角度展开分析,总结和归纳了提高组装结构有序度的精准组装策略,包括:(1)利用组装体热力学稳定性差异,设计各向异性构筑基元诱导目标组装结构的形成,发展自纠错策略提高组装界面匹配度;(2)引入宏观构筑基元的组装动力学设计,使构筑基元发生自驱动运动并通过界面长程力取向,使组装界面达到高度匹配,实现近热力学平衡态的精准组装,直接获得精准结构. 进而,结合精准宏观超分子组装制备的有序结构,我们展望了其在构建组织工程支架方面的应用前景.

English

    1. [1]

      Harkness V R W, Avakyan N, Sleiman H F, Mittermaier A K. Nat Commun, 2018, 9(1): 3152 doi: 10.1038/s41467-018-05502-z

    2. [2]

      Lu F, Yager K G, Zhang Y, Xin H, Gang O. Nat Commun, 2015, 6(1): 6912 doi: 10.1038/ncomms7912

    3. [3]

      Schulte B, Tsotsalas M, Becker M, Studer A, de Cola L. Angew Chem Int Ed, 2010, 49(38): 6881 − 6884 doi: 10.1002/anie.201002851

    4. [4]

      Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Nat Chem, 2011, 3(11): 34 − 37

    5. [5]

      Cheng M, Gao H, Zhang Y, Tremel W, Chen J F, Shi F, Knoll W. Langmuir, 2011, 27(11): 6559 − 6564 doi: 10.1021/la201399w

    6. [6]

      Yamaguchi H, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Macromolecules, 2011, 44(8): 2395 − 2399 doi: 10.1021/ma200398y

    7. [7]

      Cheng M, Shi F, Li J, Lin Z, Jiang C, Xiao M, Zhang L, Yang W, Nishi T. Adv Mater, 2014, 26(19): 3009 − 3013 doi: 10.1002/adma.201305177

    8. [8]

      Cheng M J, Zhang Q, Shi F. Chinese J Polym Sci, 2018, 36(3): 306 − 321 doi: 10.1007/s10118-018-2069-z

    9. [9]

      Cheng Mengjiao(成梦娇), Zhang Qian(张倩), Shi Feng(石峰). Scientia Sinica Chimica(中国科学: 化学), 2017, 47(7): 816 − 829 doi: 10.1360/N032016-00195

    10. [10]

      Ju G, Cheng M, Zhang Q, Guo F, Xie P, Shi F. ACS Appl Nano Mater, 2018, 1(10): 5662 − 5672 doi: 10.1021/acsanm.8b01277

    11. [11]

      Ju G, Cheng M, Guo F, Zhang Q, Shi F. Angew Chem Int Ed, 2018, 57(29): 8963 − 8967 doi: 10.1002/anie.201803632

    12. [12]

      Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y, Xie T. Adv Mater, 2014, 26(32): 5665 − 5669 doi: 10.1002/adma.201402026

    13. [13]

      Ji X, Wu R T, Long L, Ke X S, Guo C, Ghang Y J, Lynch V M, Huang F, Sessler J L. Adv Mater, 2018, 30(11): 1705480 doi: 10.1002/adma.201705480

    14. [14]

      Li J, Xu Z, Xiao Y, Gao G, Chen J, Yin J, Fu J. J Mater Chem B, 2018, 6(2): 257 − 264 doi: 10.1039/C7TB02904G

    15. [15]

      Li Q, Zhang Y W, Wang C F, Weitz D A, Chen S. Adv Mater, 2018, 30(52): 1803475 doi: 10.1002/adma.201803475

    16. [16]

      Wu Baoyi(吴宝意), Xu Yawen(徐亚文), Le Xiaoxia(乐晓霞), Jian Yukun(简钰坤), Lu Wei(路伟), Zhang Jiawei(张佳玮), Chen Tao(陈涛). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 496 − 504 doi: 10.11777/j.issn1000-3304.2019.18281

    17. [17]

      Tantakitti F, Boekhoven J, Wang X, Kazantsev R V, Yu T, Li J, Zhuang E, Zandi R, Ortony J H, Newcomb C J, Palmer L C, Shekhawat G S, de la Cruz M O, Schatz G C, Stupp S I. Nat Mater, 2016, 15(1): 469 − 476

    18. [18]

      Lu Haixu(陆海旭), Tang Liming(唐黎明). Acta Polymerica Sinica(高分子学报), 2013, (10): 1241 − 1246 doi: 10.3724/SP.J.1105.2013.13183

    19. [19]

      Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat Commun, 2012, 3(1): 603 doi: 10.1038/ncomms1617

    20. [20]

      Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Nat Commun, 2012, 3(1): 831 doi: 10.1038/ncomms1841

    21. [21]

      Akram R, Cheng M, Guo F, Iqbal S, Shi F. Langmuir, 2016, 32(15): 3617 − 3622 doi: 10.1021/acs.langmuir.6b00115

    22. [22]

      Xiao M, Xian Y, Shi F. Angew Chem Int Ed, 2015, 54(31): 8952 − 8956 doi: 10.1002/anie.201502349

    23. [23]

      Ju G, Zhang Q, Guo F, Xie P, Cheng M, Shi F. J Mater Chem B, 2019, 7(10): 1684 − 1689 doi: 10.1039/C8TB02588F

    24. [24]

      Zhang Q, Liu C, Ju G, Cheng M, Shi F. Macromol Rapid Commun, 2018, 39(20): 1800180 doi: 10.1002/marc.201800180

    25. [25]

      Liu Chongxian(刘崇现), Zhang Qian(张倩), Zhang Yajun(张亚军), Cheng Mengjiao(成梦娇), Shi Feng(石峰). Chinese Science Bulletin(科学通报), 2018, 63(34): 3650 − 3657 doi: 10.1360/N972018-00858

    26. [26]

      Qi H, Ghodousi M, Du Y, Grun C, Bae H, Yin P, Khademhosseini A. Nat Commun, 2013, 4(2275): 1 − 10

    27. [27]

      Ji X, Chen W, Long L, Huang F, Sessler J L. Chem Sci, 2018, 9(40): 7746 − 7752 doi: 10.1039/C8SC03463J

    28. [28]

      Ji X, Li Z, Liu X, Peng H-Q, Song F, Qi J, Lam J W Y, Long L, Sessler J L, Tang B Z. Adv Mater, 2019, 31(40): 1902365 doi: 10.1002/adma.201902365

    29. [29]

      Ji X, Shi B, Wang H, Xia D, Jie K, Wu Z L, Huang F. Adv Mater, 2015, 27(48): 8062 − 8066 doi: 10.1002/adma.201504355

    30. [30]

      Ju G, Guo F, Zhang Q, Kuehne A J C, Cui S, Cheng M, Shi F. Adv Mater, 2017, 29(37): 1702444 doi: 10.1002/adma.201702444

    31. [31]

      Israelachvili J N. 11 - Contrasts between intermolecular, interparticle, and intersurface forces. In: Israelachvili J N, ed. Intermolecular and Surface Forces (3th ed). Boston: Elsevier Academic Press, 2011. 205 − 222

    32. [32]

      Cheng M, Ju G, Zhang Y, Song M, Zhang Y, Shi F. Small, 2014, 10(19): 3907 − 3911 doi: 10.1002/smll.201400922

    33. [33]

      Vinay T V, Banuprasad T N, George S D, Varghese S, Varanakkottu S N. Adv Mater Interfaces, 2017, 4(7): 1601231 doi: 10.1002/admi.201601231

    34. [34]

      Bowden N B, Weck M, Choi I S, Whitesides G M. Acc Chem Res, 2001, 34(3): 231 − 238 doi: 10.1021/ar0000760

    35. [35]

      Gracias D H, Tien J, Breen T L, Hsu C, Whitesides G M. Science, 2000, 289(5482): 1170 − 1172 doi: 10.1126/science.289.5482.1170

    36. [36]

      Ismagilov R F, Schwartz A, Bowden N, Whitesides G M. Angew Chem Int Ed, 2002, 41(4): 652 − 654 doi: 10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U

    37. [37]

      Xiao M, Cheng M, Zhang Y, Shi F. Small, 2013, 9(15): 2509 − 2514 doi: 10.1002/smll.201203105

    38. [38]

      Xiao M, Jiang C, Shi F. NPG Asia Mater, 2014, 6: e128 doi: 10.1038/am.2014.76

    39. [39]

      Cheng M, Zhang D, Zhang S, Wang Z, Shi F. CCS Chem, 2019, 1(2): 148 − 155 doi: 10.31635/ccschem.019.20180009

    40. [40]

      Cheng M, Zhu G, Li L, Zhang S, Zhang D, Kuehne A J C, Shi F. Angew Chem Int Ed, 2018, 57(43): 14106 − 14110 doi: 10.1002/anie.201808294

    41. [41]

      Tjandra K C, Thordarson P. Bioconjugate Chem, 2019, 30(3): 503 − 514 doi: 10.1021/acs.bioconjchem.8b00804

    42. [42]

      Curk T, Dobnikar J, Frenkel D. Design principles for super selectivity using multivalent interactions. In: Huskens J, Prins L J, Haag R, Ravoo B J, eds. Multivalency: Concepts, Research & Applications. Hoboken: John Wiley & Sons Ltd., 2017. 75 − 101

    43. [43]

      Pandey S, Ewing M, Kunas A, Nguyen N, Gracias D H, Menon G. Proc Natl Acad Sci U S A, 2011, 108(50): 19885 − 19890 doi: 10.1073/pnas.1110857108

    44. [44]

      Cheung K C, Demaine E D, Bachrach J R, Griffith S. IEEE T Robot, 2011, 27(4): 718 − 729 doi: 10.1109/TRO.2011.2132951

    45. [45]

      Cheng M, Liu Q, Xian Y, Shi F. ACS Appl Mater Interfaces, 2014, 6(10): 7572 − 7578 doi: 10.1021/am500910y

    46. [46]

      Zhang Y, Cheng M, Wang Y, Shi F. Langmuir, 2018, 34(3): 1100 − 1108 doi: 10.1021/acs.langmuir.7b02608

    47. [47]

      Cheng M, Zhang Y, Wang S, Shi F. Nanoscale, 2017, 9(44): 17220 − 17223 doi: 10.1039/C7NR07059D

    48. [48]

      Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Biotechnol Bioeng, 2011, 108(7): 1693 − 1703 doi: 10.1002/bit.23102

    49. [49]

      Han Y, Yang Y, Li S, Wu J, Chen Y, Lu T, Xu F. Biofabrication, 2013, 5(3): 035004 doi: 10.1088/1758-5082/5/3/035004

    50. [50]

      Cheng M, Wang Y, Yu L, Su H, Han W, Lin Z, Li J, Hao H, Tong C, Li X, Shi F. Adv Funct Mater, 2015, 25(44): 6851 − 6857 doi: 10.1002/adfm.201503366

    1. [1]

      吴宝意徐亚文乐晓霞简钰坤路伟张佳玮陈涛 . 基于动态硼酸酯键的水凝胶的模块化组装和智能形变. 高分子学报, 2019, 50(5): 496-504. doi: 10.11777/j.issn1000-3304.2019.18281

    2. [2]

      候平平张振宇平静沈志豪范星河周其凤 . 甲壳型液晶高分子的构筑、自组装及其功能化. 高分子学报, 2017, (10): 1591-1608. doi: 10.11777/j.issn1000-3304.2017.17116

    3. [3]

      宋会花刘泽华郭海清 . 用“超分子板块构筑法”制备有机/无机组装体发光材料. 高分子学报, 2003, (5): 609-611.

    4. [4]

      陶杰林翠玲王兆龙魏斌华奇侠万雪婷邱化玉尹守春 . 基于金属配位和主客体相互作用分级自组装构筑超分子凝胶. 高分子学报, 2017, (1): 93-100. doi: 10.11777/j.issn1000-3304.2017.16244

    5. [5]

      张希王力彦徐江飞陈道勇史林启周永丰沈志豪 . 聚合物超分子体系:设计、组装与功能. 高分子学报, 2019, 50(10): 973-987. doi: 10.11777/j.issn1000-3304.2019.19109

    6. [6]

      姚灏王景霞宋昕张海涛范晓东田威 . 超声和光双重调控的AB2主客体型两亲分子的超分子自组装与程序化控释研究. 高分子学报, 2017, (1): 63-70. doi: 10.11777/j.issn1000-3304.2017.16202

    7. [7]

      闫毅张斌李豹吴立新 . 杂化大阴离子簇自组装及光致组装结构转变. 高分子学报, 2017, (1): 101-111. doi: 10.11777/j.issn1000-3304.2017.16245

    8. [8]

      郭美琼洪海燕孙晓毅周永丰颜德岳 . 三维宏观网络状囊泡薄膜的分级自组装研究. 高分子学报, 2008, (4): 303-308. doi: 10.3724/SP.J.1105.2008.00303

    9. [9]

      陆海旭唐黎明 . 四重氢键调控有机凝胶的宏观自组装. 高分子学报, 2013, (10): 1241-1246. doi: 10.3724/SP.J.1105.2013.13183

    10. [10]

      史博黄军左张运生梁亮 . 静电组装法在SiO2表面构筑高分子刷的合成及表征. 高分子学报, 2010, (8): 1009-1015. doi: 10.3724/SP.J.1105.2010.09312

    11. [11]

      候平平沈志豪范星河 . 侧基含纳米构筑单元的甲壳型液晶高分子的多层次自组装. 高分子学报, 2017, (7): 1038-1046. doi: 10.11777/j.issn1000-3304.2017.17042

    12. [12]

      王艳艳方飞丁欣陈小璇郑康陈林田兴友张献 . 碳纳米管基杂化涂层的自组装构筑及对棉织物阻燃性能的影响. 高分子学报, 2016, (12): 1695-1703. doi: 10.11777/j.issn1000-3304.2016.16097

    13. [13]

      庞思思王兵 . 沉淀制备双酚A -堆积自组装印迹聚合物及其特异性识别机理研究. 高分子学报, 2014, (1): 49-55. doi: 10.3724/SP.J.1105.2014.13149

    14. [14]

      黄子涵董伯骏陈鹏宇杨烨朱国龙燕立唐 . 含Janus粒子组装体的构筑、调控及功能的模拟与理论分析. 高分子学报, 2016, (8): 979-991. doi: 10.11777/j.issn1000-3304.2016.16055

    15. [15]

      李其易雷霆姚泽凡王婕妤裴坚 . 共轭高分子的多级组装. 高分子学报, 2019, 50(1): 1-12. doi: 10.11777/j.issn1000-3304.2018.18223

    16. [16]

      谌东中万雷方江邻余学海 . 二元羧酸与4,4′-联吡啶氢键缔合组装主链型超分子液晶. 高分子学报, 2002, (6): 734-737.

    17. [17]

      余登斌孟文清蒋春霞陈德本钟安永 . 高分子化8-羟基喹啉锂的合成与静电自组装研究. 高分子学报, 2008, (7): 708-713. doi: 10.3724/SP.J.1105.2008.00708

    18. [18]

      张昊宇和亚宁李煜璟王晓工 . 超支化偶氮大分子重氮盐静电层-层自组装膜的制备及光响应性研究. 高分子学报, 2008, (4): 383-387. doi: 10.3724/SP.J.1105.2008.00383

    19. [19]

      李品一王建祺沈优珍 . 接触角法研究医用聚醚聚氨酯材料表面自由能与界面自由能. 高分子学报, 1991, (3): 356-360.

    20. [20]

      郭和泽宋晟戴婷婷李圣利窦红静 . 由自组装构筑蛋白酶响应性近红外/磁共振双显影微球. 高分子学报, 2018, 0(8): 1127-1140. doi: 10.11777/j.issn1000-3304.2018.18079

  • Figure 1.  Examples of supramolecular assembly of building blocks at (a) molecular level (Reprinted with permission from Ref.[1]; Copyright (2018) Nature Publishing Group), (b) nano scale (Reprinted with permission from Ref.[2]; Copyright (2015) Nature Publishing Group), (c) micrometer scale (Reprinted with permission from Ref.[3]; Copyright (2010) WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim), (d) hunderds of micrometer scale (Reprinted with permission from Ref.[5]; Copyright (2011) American Chemical Society), and (e) centimeter scale (Reprinted with permission from Ref.[6]; Copyright (2011) American Chemical Society)

    Figure 2.  Schematic illustration of (a) macroscopic supramolecular assembly (MSA) and (b) energy landscape of MSA dimers with different matching degrees (Reprinted with permission from Ref.[30]; Copyright (2017) WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim)

    Figure 3.  Design of cylindrical building blocks with varied diameter/height (d/h) ratios and the percentage of different assemblies versus d/h ratio (Reprinted with permission from Ref.[21]; Copyright (2016) American Chemical Society)

    Figure 4.  (a) Self-correction strategy and corresponding experiments using ionic hydrogels as model MSA to realize precise assembly of 100 dimers; (b) Equilibrium assembly by partially shielding surface charges and its comparison with self-correction (Reprinted with permission from Ref.[30]; Copyright (2017) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 5.  Design of macroscopic building blocks regarding (a) self-propulsion, alignment thorough long ranged forces (Reprinted with permission from Ref.[32]; Copyright (2014) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim); (b) Interfacial molecular assembly through converting hydrophobic assembly to hydrophilic assembly (Reprinted with permission from Ref.[22]; Copyright (2015) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 6.  (a) Schematic illustration of prolonged Marangoni effect through competitive equilibrium between interfacial adsorption of SDS and its complexation with CD in solution; (b) The motion lifetime is prolonged and the MSA assembly efficiency is increased. (Reprinted with permission from Ref.[40]; Copyright (2018) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 7.  Examples of using MSA precise structures for potential uses as tissue scaffolds: (a) vascular-like geometry (Reprinted with permission from Ref.[48]; Copyright (2011) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim), (b) patterns of complementary shapes (Reprinted with permission from Ref.[49]; Copyright (2013) IOP Publishing, Ltd.), (c) stacked structures (Reprinted with permission from Ref.[50]; Copyright (2015) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

  • 加载中
图(8)
计量
  • PDF下载量:  64
  • 文章访问数:  1831
  • HTML全文浏览量:  816
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计