ISSN 1000-3304CN 11-1857/O6

力学功能蛋白生物合成及材料应用

刘凯 李敬敬 马俊 柳柏梅 马超

引用本文: 刘凯, 李敬敬, 马俊, 柳柏梅, 马超. 力学功能蛋白生物合成及材料应用[J]. 高分子学报, 2020, 51(7): 698-709. doi: 10.11777/j.issn1000-3304.2020.20074 shu
Citation:  Kai Liu, Jing-jing Li, Jun Ma, Bai-mei Liu and Chao Ma. Biological Synthesis of Structural Proteins and Applications[J]. Acta Polymerica Sinica, 2020, 51(7): 698-709. doi: 10.11777/j.issn1000-3304.2020.20074 shu

力学功能蛋白生物合成及材料应用

    作者简介: 刘凯,男,1983年生. 2015年博士毕业于荷兰格罗宁根大学,2015 ~ 2017年在荷兰格罗宁根大学和美国哈佛大学从事博士后研究. 2017年任中国科学院长春应用化学研究所研究员,2020年任清华大学化学系长聘副教授,目前研究方向为高性能生物材料的生物合成及高技术应用;
    通讯作者: 刘凯, E-mail: kai.liu@ciac.ac.cn
摘要: 源自蛛丝、蚕丝、贻贝胶的生物力学结构蛋白及其材料在高技术领域具有重要的应用前景. 目前人工合成生物力学蛋白面临着蛋白种类和序列较单一、化学作用机制不清楚、结构优化复杂、性能不稳定、量产困难等诸多问题. 因此实现力学功能蛋白的分子理性设计、精准高效合成和性能调控是该领域面临的挑战. 目前合成生物学技术的发展为力学结构蛋白的优化设计、合成以及材料性能提高提供了新的思路和策略. 本专论将集中探讨合成结构性蛋白研究近况、进展和技术突破. 重点展开对基于蛛丝序列和非蛛丝序列的人工蛋白的设计与合成的讨论,并突出它们在构建高强纤维和高强粘合剂材料方面的应用. 最后并对合成蛋白及力学应用领域的发展进行评述和展望.

English

    1. [1]

      Chang Y C, Jiao Y, Symons H E, Xu J F, Faul C F J, Zhang X. Chem Soc Rev, 2019, 48(4): 989 − 1003 doi: 10.1039/C8CS00806J

    2. [2]

      Kluge J A, Rabotyagova O, Leisk G G, Kaplan D L. Trends Biotechnol, 2008, 26(5): 244 − 251 doi: 10.1016/j.tibtech.2008.02.006

    3. [3]

      Sun J, Su J, Ma C, Gostl R, Herrmann A, Liu K, Zhang H J. Adv Mater, 2019, 32(6): e1906360 doi: 10.1002/adma.201906360

    4. [4]

      Huang W, Ebrahimi D, Dinjaski N, Tarakanova A, Buehler M J, Wong J Y, Kaplan D L. Acc Chem Res, 2017, 50(4): 866 − 876 doi: 10.1021/acs.accounts.6b00616

    5. [5]

      Rising A, Johansson J. Nat Chem Biol, 2015, 11(5): 309 − 315 doi: 10.1038/nchembio.1789

    6. [6]

      Hagn F, Eisoldt L, Hardy J G, Vendrely C, Coles M, Scheibel T, Kessler H. Nature, 2010, 465(7295): 239 − 242 doi: 10.1038/nature08936

    7. [7]

      Miserez A, Guerette P A. Chem Soc Rev, 2013, 42(5): 1973 − 1995 doi: 10.1039/C2CS35294J

    8. [8]

      Frydrych M, Greenhalgh A, Vollrath F. Sci Rep, 2019, 9(1): e15428 doi: 10.1038/s41598-019-51589-9

    9. [9]

      Zhang Xi(张希), Wang Liyan(王力彦), Xu Jiangfei(徐江飞), Chen Daoyong(陈道勇), Shi Linqi(史林启),Zhou Yongfeng(周永丰), Shen Zhihao(沈志豪). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 973 − 987 doi: 10.11777/j.issn1000-3304.2019.19109

    10. [10]

      Sun Jing(孙静), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2018, (1): 1 − 8 doi: 10.11777/j.issn1000-3304.2018.17220

    11. [11]

      Zhang Chong(张冲), Lv Hua(吕华). Acta Polymerica Sinica(高分子学报), 2018, (1): 21 − 31 doi: 10.11777/j.issn1000-3304.2018.17204

    12. [12]

      Gainza-Cirauqui P, Correia B E. Curr Opin Biotechnol, 2018, 52(4): 145 − 152

    13. [13]

      Grunberg R, Serrano L. Nucleic Acids Res, 2010, 38(8): 2663 − 2675 doi: 10.1093/nar/gkq139

    14. [14]

      Roberts A D, Finnigan W, Wolde-Michael E, Kelly P, Blaker J J, Hay S, Breitling R, Takano E, Scrutton N S. MRS Commun, 2019, 9(2): 486 − 504 doi: 10.1557/mrc.2019.35

    15. [15]

      Li Y X, Li J J, Sun J, He H N, Li B, Ma C, Liu K, Zhang H J. Angew Chem Int Ed, 2020, 59(21): e202002399 doi: 10.1002/anie.202002399

    16. [16]

      Shen H, Fallas J A, Lynch E, Sheffler W, Parry B, Jannetty N, Decarreau J, Wagenbach M, Vicente J J, Chen J, Wang L, Dowling Q, Oberdorfer G, Stewart L, Wordeman L, de Yoreo J, Jacobs-Wagner C, Kollman J, Baker D. Science, 2018, 362(6415): 705 − 709 doi: 10.1126/science.aau3775

    17. [17]

      Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen M M, Huang W, Rizzo D J, Li D, Staii C, Pugno N M, Wong J Y, Kaplan D L, Buehler M J. Nat Commun, 2015, 6: 6892 doi: 10.1038/ncomms7892

    18. [18]

      Dou Xueyu(窦雪宇), Wang Xing(王星), Wu Decheng(吴德成). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 429 − 441 doi: 10.11777/j.issn1000-3304.2019.18263

    19. [19]

      Xia X X, Qian Z G, Ki C S, Park Y H, Kaplan D L, Lee S Y. Proc Natl Acad Sci U S A, 2010, 107(32): 14059 − 14063 doi: 10.1073/pnas.1003366107

    20. [20]

      Bowen C H, Dai B, Sargent C J, Bai W, Ladiwala P, Feng H, Huang W, Kaplan D L, Galazka J M, Zhang F. Biomacromolecules, 2018, 19(9): 3853 − 3860 doi: 10.1021/acs.biomac.8b00980

    21. [21]

      Hagn F, Thamm C, Scheibel T, Kessler H. Angew Chem Int Ed, 2011, 50(1): 310 − 313 doi: 10.1002/anie.201003795

    22. [22]

      Parent L R, Onofrei D, Xu D, Stengel D, Roehling J D, Addison J B, Forman C, Amin S A, Cherry B R, Yarger J L, Gianneschi N C, Holland G P. Proc Natl Acad Sci USA, 2018, 115(45): 11507 − 11512 doi: 10.1073/pnas.1810203115

    23. [23]

      Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T. Adv Mater, 2015, 27(13): 2189 − 2194 doi: 10.1002/adma.201404234

    24. [24]

      Andersson M, Jia Q, Abella A, Lee X Y, Landreh M, Purhonen P, Hebert H, Tenje M, Robinson C V, Meng Q, Plaza G R, Johansson J, Rising A. Nat Chem Biol, 2017, 13(3): 262 − 264 doi: 10.1038/nchembio.2269

    25. [25]

      Xu L, Weatherbee-Martin N, Liu X Q, Rainey J K. Small, 2019, 15(12): e1805294 doi: 10.1002/smll.201805294

    26. [26]

      Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat Mater, 2015, 14(1): 23 − 36 doi: 10.1038/nmat4089

    27. [27]

      Fu J, Guerette P A, Pavesi A, Horbelt N, Lim C T, Harrington M J, Miserez A. Nanoscale, 2017, 9(35): 12908 − 12915 doi: 10.1039/C7NR02527K

    28. [28]

      Su R S, Gill E E, Kim Y, Liu J C. J Mech Behav Biomed Mater, 2019, 91(3): 68 − 75

    29. [29]

      Nagapudi K, Brinkman W T, Thomas B S, Park J O, Srinivasarao M, Wright E, Conticello V P, Chaikof E L. Biomaterials, 2005, 26(23): 4695 − 4706 doi: 10.1016/j.biomaterials.2004.11.027

    30. [30]

      Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. ACS Biomater Sci Eng, 2016, 2(3): 349 − 360 doi: 10.1021/acsbiomaterials.5b00461

    31. [31]

      Bracalello A, Santopietro V, Vassalli M, Marletta G, Del G R, Bochicchio B, Pepe A. Biomacromolecules, 2011, 12(8): 2957 − 2965 doi: 10.1021/bm2005388

    32. [32]

      He H N, Yang C J, Wang F, Wei Z, Shen J L, Chen D, Fan C H, Zhang H J, Liu K. Angew Chem Int Ed, 2020, 59(11): 4344 − 4348 doi: 10.1002/anie.201915262

    33. [33]

      Liu K, Pesce D, Ma C, Tuchband M, Shuai M, Chen D, Su J, Liu Q, Gerasimov J Y, Kolbe A, Zajaczkowski W, Pisula W, Müllen K, Clark N A, Herrmann A. Adv Mater, 2015, 27(15): 2459 − 2465 doi: 10.1002/adma.201405182

    34. [34]

      Ma C, Su J, Li B, Herrmann A, Zhang H J, Liu K. Adv Mater, 2020, 32(10): e1907697 doi: 10.1002/adma.201907697

    35. [35]

      Zhang J R, Sun J, Li B, Yang C J, Shen J L, Wang N, Gu R, Wang D G, Chen D, Hu H G, Fan C H, Zhang H J, Liu K. Small, 2020, 16(8): e1907598 doi: 10.1002/smll.201907598

    36. [36]

      Stewart R J. Appl Microbiol Biotechnol, 2011, 89(1): 27 − 33 doi: 10.1007/s00253-010-2913-8

    37. [37]

      Yang B, Ayyadurai N, Yun H, Choi Y S, Hwang B H, Huang J, Lu Q, Zeng H, Cha H J. Angew Chem Int Ed, 2014, 53(49): 13360 − 13364 doi: 10.1002/anie.201406099

    38. [38]

      Brennan M J, Kilbride B F, Wilker J J, Liu J C. Biomaterials, 2017, 124(1): 116 − 125 doi: 10.1016/j.biomaterials.2017.01.034

    39. [39]

      Brennan M J, Hollingshead S E, Wilker J J, Liu J C. R Soc Open Sci, 2018, 5(5): 171225 doi: 10.1098/rsos.171225

    40. [40]

      Zhong C, Gurry T, Cheng A A, Downey J, Deng Z, Stultz C M, Lu T K. Nat Nanotechnol, 2014, 9(10): 858 − 866 doi: 10.1038/nnano.2014.199

    41. [41]

      Cui M, Wang X, An B, Zhang C, Gui X, Li K, Li Y, Ge P, Zhang J, Liu C, Zhong C. Sci Adv, 2019, 5(8): x3155 doi: 10.1126/sciadv.aax3155

    42. [42]

      Shin M, Shin J Y, Kim K, Yang B, Han J W, Kim N K, Cha H J. J Colloid Interface Sci, 2020, 563(12): 168 − 176

    43. [43]

      Annabi N, Zhang Y N, Assmann A, Sani E S, Cheng G, Lassaletta A D, Vegh A, Dehghani B, Ruiz-Esparza G U, Wang X, Gangadharan S, Weiss A S, Khademhosseini A. Sci Transl Med, 2017, 9(410): i7466 doi: 10.1126/scitranslmed.aai7466

    44. [44]

      Zhang L, Ma C, Sun J, Shao B Q, Portale G, Chen D, Liu K, Herrmann A. Angew Chem Int Ed, 2018, 57(23): 6878 − 6882 doi: 10.1002/anie.201803169

    45. [45]

      Li J J, Li B, Sun J, Ma C, Wan S K, Li Y X, Gostl R, Herrmann A, Liu K, Zhang H J. Adv Mater, 2020, 32(17): e2000964 doi: 10.1002/adma.202000964

    46. [46]

      Ma C, Su J, Sun Y, Feng Y, Shen N, Li B, Liang Y, Yang X, Wu H, Zhang H, Herrmann A, Tanzi R E, Liu K, Zhang C. Angew Chem Int Ed, 2019, 58(51): 18876 − 18882 doi: 10.1002/anie.201912399

    1. [1]

      叶海木章越徐军郭宝华吴琼陈国强 . 高强度聚(R-3-羟基丁酸酯-co-R-3-羟基己酸酯)纤维的制备及其力学性能的调节. 高分子学报, 2012, (12): 1465-1471. doi: 10.3724/SP.J.1105.2012.12105

    2. [2]

      陈姿晔相恒学胡泽旭倪张根朱美芳 . 异相成核和拉伸诱导对生物基PHBV复合纤维结晶结构与力学性能的影响. 高分子学报, 2017, (7): 1121-1129. doi: 10.11777/j.issn1000-3304.2017.16366

    3. [3]

      陈勇伟张日东陈欣冯新星来侃周岚张建春 . 牵伸作用对尼龙6纤维晶型结构及力学性能的影响. 高分子学报, 2014, (12): 1643-1647. doi: 10.11777/j.issn1000-3304.2014.14129

    4. [4]

      邓竞科李国平罗运军 . GAP黏合剂体系交联网络结构研究. 高分子学报, 2016, (4): 464-470. doi: 10.11777/j.issn1000-3304.2016.15232

    5. [5]

      王志亮李皆富聂静杨曙光 . 水热处理对聚酰胺6纤维结构和性能的影响. 高分子学报, 2016, (12): 1710-1716. doi: 10.11777/j.issn1000-3304.2016.16109

    6. [6]

      付浩肖长发孙乐乐潘健权全 . 偏氟乙烯-六氟丙烯共聚物纤维结构与性能表征. 高分子学报, 2018, 0(5): 624-631. doi: 10.11777/j.issn1000-3004.2017.17158

    7. [7]

      于志省李杨 . SIBR增韧本体法ABS树脂的合成与性能结构与性能及断裂机理. 高分子学报, 2012, (4): 433-439. doi: 10.3724/SP.J.1105.2012.11229

    8. [8]

      黄博能王娇娜李从举 . 可调制润湿性和力学性能的电纺纤维膜的制备与性能研究. 高分子学报, 2012, (9): 929-936. doi: 10.3724/SP.J.1105.2012.11405

    9. [9]

      谭珏郑裕东彭江吴健高爽田茹陈红谚 . 层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究. 高分子学报, 2012, (4): 351-356. doi: 10.3724/SP.J.1105.2012.11171

    10. [10]

      杨树颜贾志欣刘岚罗远芳贾德民刘治猛 . 冰点下降法研究交联网络结构对天然橡胶力学性能的影响. 高分子学报, 2014, (7): 943-947. doi: 10.11777/j.issn1000-3304.2014.13411

    11. [11]

      古菊林路罗远芳贾德民 . 纳米微晶纤维素对炭黑补强天然橡胶力学性能和动态性能的影响. 高分子学报, 2012, (8): 852-860. doi: 10.3724/SP.J.1105.2012.11377

    12. [12]

      章越徐军郭宝华 . 聚乳酸/凹凸棒土纳米复合材料的结构与性能. 高分子学报, 2012, (1): 83-88. doi: 10.3724/SP.J.1105.2012.11070

    13. [13]

      丁勇罗远芳薛锋贾志欣贾德民 . 磷腈类衍生物改性磷酸锆的合成及其复配聚磷酸铵对硅橡胶阻燃性能和力学性能的影响. 高分子学报, 2017, (11): 1796-1805. doi: 10.11777/j.issn1000-3304.2017.17005

    14. [14]

      张君妍孟思陈文萍成艳华朱美芳 . 高力学强度细菌纤维素气凝胶纤维的连续化制备. 高分子学报, 2020, 51(0): 1-9. doi: 10.11777/j.issn1000-3304.2020.20143

    15. [15]

      刘德中李皆富黄文弢杨曙光 . 高分子复合物纤维的研究进展. 高分子学报, 2018, (4): 445-455. doi: 10.11777/j.issn1000-3304.2017.17285

    16. [16]

      宋建会周凤王湘任毅张晓红郭鸣明乔金樑 . 纤维素/全硫化弹性纳米粒子复合膜的制备与性能. 高分子学报, 2017, (4): 676-682. doi: 10.11777/j.issn1000-3304.2017.16190

    17. [17]

      尚枝汪东郭靖张青松赵宁徐坚陈莉 . 静电纺丝制备自修复功能纤维及其自愈合性能表征. 高分子学报, 2015, (6): 727-732. doi: 10.11777/j.issn1000-3304.2015.14431

    18. [18]

      岳丽娜郑裕东栾家斌余弈谢亚杰吴健 . 含水状态对细菌纤维素/聚苯胺复合凝胶膜制备及性能的影响. 高分子学报, 2014, (9): 1228-1237. doi: 10.11777/j.issn1000-3304.2014.13478

    19. [19]

      李良钊张秀芹罗发亮赵莹王笃金 . 改性纳米碳酸钙-聚丙烯复合材料的结构与性能研究. 高分子学报, 2011, (10): 1218-1223. doi: 10.3724/SP.J.1105.2011.10334

    20. [20]

      段荣涛董雪李德福汪秀丽王玉忠 . 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能. 高分子学报, 2016, (1): 70-77. doi: 10.11777/j.issn1000-3304.2016.15135

  • Figure 1.  The development of mechanically strong proteinaceous materials promoted by synthetic biology (Adapted with permission from Ref.[15]; Copyright (2020) John Wiley & Sons Inc.)

    Figure 2.  Biosynthesis of recombinant spidroins and biomimetic fibers. (a) Schematic representation for split intein-mediated ligation of spider silk proteins with unprecedented molecular weight. The ligation of an N-intein (IntN)-fused 96-mer spidroin with a C-intein (IntC)-fused 96-mer yields a 556 kDa, 192-mer spidroin (Adapted with permission from Ref.[20]; Copyright (2018) American Chemical Society). (b) Scheme of the recombinant proteins derived from MaSp2 of Araneus diadematus. These engineered proteins varied in length/number of core repeats and presence/absence of the amino and/or carboxyl-terminal domains. The theoretical molecular weight of the respective recombinant proteins is shown. (c) Average toughness of natural dragline silk fibers (blue), fibers spun from CSD (Classical Spinning Dopes, red) and BSD (Biomimetic Spinning Dopes, green). Post-stretched fibers spun from BSD showed a significant increase in toughness in comparison to the poststretched fibers spun from CSD (The online version is coloful.) (Adapted with permission from Ref.[23]; Copyright (2015) John Wiley & Sons Inc.)

    Figure 3.  Theoretical design and experimental verification of structural proteins self-assembly: (a) Computational model and cryo-EM structure diagram of 6 representative self-assembled fibers; (b) Interface diagram of two main monomers in DHF119 fiber, the computational model (grey) and cryo-EM structure (cyan) are very close to each other; (c) An anchor structure that holds a monomer in a single fiber rigid body; (d) Self-assembly of DHF119 single fiber on magnetic beads coated with C6 anchor structure (Adapted with permission from Ref.[16]; Copyright (2018) AAAS)

    Figure 4.  Preparation and mechanical properties of structural protein materials based on amino acid sequence design. (a) Preparation and characterization of elastin-like liquid crystals based on GFP-SUPs and surfactants; (b) Comparison of modulus of GFP-SUPs liquid crystal materials with different charges; (c) Study on preparation and plasticity of anhydrous protein liquid crystal gel (Adapted with permission from Ref.[33]; Copyright (2015) John Wiley & Sons Inc); (d) Stress-strain curves of a series of double charged EE-DEAB LC gels; (e) The corresponding tensile strengths and Young’s moduli of the protein LC gel fibers (Adapted with permission from Ref.[34]; Copyright (2020) John Wiley & Sons Inc).

    Figure 5.  Fabrication and suturing application of fibers based on non-spider proteins. (a) Design and expression of the recombinant non-spider chimeric proteins consisting of a squid ring teeth (SRT) segment and a cationic elastin-like polypeptide (ELP) sequence. These SRT-ELP fusion proteins varied in number of repeats (12, 24 and 36) and presence/absence of the amino and carboxyl-terminal cysteine residues. (b) Spider chart representing the mechanical performance evolution of the SRT-ELP fibers. The SRT-ELP fibers generally have a stronger tensile strength, Young’s modulus, and toughness as increasing the molecular weight of the chimeric proteins (Adapted with permission from Ref.[15]; Copyright (2020) John Wiley & Sons Inc). (c − h) Suturing applications by the biological fibers. The fibers were used for suturing of wounds on (c, d) rat skin, (e) rat liver, (f, g) minipig skin and (h) porcine liver, respectively. The bars in (c − h) are 1, 0.5, 0.3, 15, 1 and 1 cm, respectively (Adapted with permission from Ref.[35]; Copyright (2020) John Wiley & Sons Inc).

    Figure 6.  Combinatorial and modular genetic strategy for bio-engineering adhesives. (a) Schematic illustration of the in vivo residue-specific incorporation of Dopa into recombinant MAP (Adapted with permission from Ref.[37]; Copyright (2014) John Wiley & Sons Inc). (b) A tyrosine-rich ELP referred to as ELY16 was expressed in E. coli. Using mushroom tyrosinase, tyrosines were then converted to DOPA for creating an adhesive protein, mELY16 (Adapted with permission from Ref.[38]; Copyright (2017) Elsevier). (c) Schematic illustration of two independent natural adhesive proteins: CsgA from E. coli and Mfps from mussels. CsgA-Mfp3 and Mfp5-CsgA monomers can self-assemble into large bundles of fibrils or hierarchical networks of filaments (Adapted with permission from Ref.[40];Copyright (2014) Nature Publishing Group). (d) The position of lysine controls the catechol-mediated surface adhesion and cohesion in underwater mussel adhesion (Adapted with permission from Ref.[42]; Copyright (2020) Elsevier)

    Figure 7.  Engineered near-infrared fluorescent protein assemblies for robust bioimaging. (a) Schematic representation for the fabrication of mIFP-K72-PEG assemblies. The protein mIFP-K72 was genetically fused with a cationic polypeptide of (VPGKG)72 (K72) to the C-terminus of mIFP by recombinant DNA technology and expressed in Escherichia coli. By complexation with negatively charged PEG-COO, the mIFP-K72-PEG protein assemblies were produced. (b) TEM image and size distribution of the mIFP-K72-PEG. The protein assemblies exhibit a uniform spherical structure with an average size of about 200 nm in diameter. (c) In vivo NIR fluorescence imaging of mice with metastatic tumor nodules in liver after administration of mIFP-K72-PEG. Significant fluorescence around the liver was achieved at 12 h post-injection of the protein sample. (Adapted with permission from Ref.[45]; Copyright (2020) John Wiley & Sons Inc.)

  • 加载中
图(8)
计量
  • PDF下载量:  15
  • 文章访问数:  865
  • HTML全文浏览量:  293
  • 引证文献数: 0
文章相关
  • 通讯作者:  刘凯, kai.liu@ciac.ac.cn
  • 收稿日期:  2020-03-18
  • 修稿日期:  2020-03-29
  • 刊出日期:  2020-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计