ISSN 1000-3304CN 11-1857/O6

从天然动物丝到丝蛋白基材料的研究

杨公雯 顾恺 邵正中

引用本文: 杨公雯, 顾恺, 邵正中. 从天然动物丝到丝蛋白基材料的研究[J]. 高分子学报, 2021, 52(1): 16-28. doi: 10.11777/j.issn1000-3304.2020.20142 shu
Citation:  Gong-wen Yang, Kai Gu and Zheng-zhong Shao. The Investigation from Animal Silks to Silk Protein-based Materials[J]. Acta Polymerica Sinica, 2021, 52(1): 16-28. doi: 10.11777/j.issn1000-3304.2020.20142 shu

从天然动物丝到丝蛋白基材料的研究

    作者简介: 邵正中,男,1964年生. 1981~1991年于复旦大学求学,获理学博士学位. 教育部“长江学者奖励计划”特聘教授、国家杰出青年基金获得者、英国皇家化学会会士. 主要研究方向为生物大分子,着重从高分子科学的角度对结构性生物大分子如动物丝及其相应丝蛋白和几丁质/壳聚糖等的结构、性能和仿生制备等方面进行研究,为其在结构性材料、生物医用材料和仿生矿化材料等领域中的多元化应用创造良好条件;
    通讯作者: 邵正中, E-mail: zzshao@fudan.edu.cn
摘要: 作为具有优异综合力学性能的天然蛋白质纤维,丰产的动物丝特别是蚕丝长期伴随着人们的日常生活,近十余年来,各种具有特色的功能性丝蛋白基材料更是层出不穷. 但在探索动物丝和丝蛋白基材料的过程中,动物丝纤维是经由蚕或蜘蛛等动物的纺器而纺制得到的简单事实往往被忽视;换言之,动物丝实际上是动物对丝蛋白进行体内“加工”后的产物,也是丝蛋白基材料中的一种. 因此,天然动物丝中独特的各等级间构效关系与丝蛋白基材料的构效关系之间并不存在着必然的传承效应. 本文着重介绍了我们在对动物丝和丝蛋白基材料探索中的经验和体会,即在强调以丝蛋白分子链结构与性能及其之间的关系为研究重点的基础上,从比较和发掘各种天然动物丝的特性入手,进而了解丝蛋白分子链在本体和溶液中的行为,并通过对动物丝蛋白分子链聚集态结构的调控,以达到设计制备一系列多形貌和多功能的动物丝蛋白基材料的目的.

English

    1. [1]

      Zhang X, Baughman C B, Kaplan D L. Biomaterials, 2008, 29(14): 2217−2227 doi: 10.1016/j.biomaterials.2008.01.022

    2. [2]

      Asakura T, Ashida J, Yamane T, Kameda T, Nakazawa Y, Ohgo K, Komatsu K. J Mol Biol, 2001, 306(2): 291−305 doi: 10.1006/jmbi.2000.4394

    3. [3]

      Terry A E, Knight D P, Porter D, Vollrath F. Biomacromolecules, 2004, 5(3): 768−772 doi: 10.1021/bm034381v

    4. [4]

      Zhou L, Chen X, Shao Z Z, Huang Y F, Knight D P. J Phys Chem B, 2005, 109(35): 16937−16945 doi: 10.1021/jp050883m

    5. [5]

      Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv Mater, 2009, 21(3): 366−370 doi: 10.1002/adma.200800582

    6. [6]

      Pérez-Rigueiro J, Elices M, Llorca J, Viney C. J Appl Polym Sci, 2001, 82(8): 1928−1935 doi: 10.1002/app.2038

    7. [7]

      Fu C J, Porter D, Chen X, Vollrath F, Shao Z Z. Adv Funct Mater, 2011, 21(4): 729−737 doi: 10.1002/adfm.201001046

    8. [8]

      Liu Y, Sponner A, Porter D, Vollrath F. Biomacromolecules, 2008, 9(1): 116−121 doi: 10.1021/bm700877g

    9. [9]

      Vollrath F, Madsen B, Shao Z Z. Proc R Soc Lond B, 2001, 268(1483): 2339−2346 doi: 10.1098/rspb.2001.1590

    10. [10]

      Keten S, Xu Z P, Ihle B, Buehler M J. Nat Mater, 2010, 9(4): 359−367 doi: 10.1038/nmat2704

    11. [11]

      Shao Z Z, Vollrath F. Nature, 2002, 418(6899): 741 doi: 10.1038/418741a

    12. [12]

      Fu C, Porter D, Shao Z Z. Macromolecules, 2009, 42(20): 7877−7880 doi: 10.1021/ma901321k

    13. [13]

      Agarwal N, Hoagland D A, Farris R J. J Appl Polym Sci, 1997, 63(3): 401−410 doi: 10.1002/(SICI)1097-4628(19970118)63:3<401::AID-APP17>3.0.CO;2-2

    14. [14]

      Porter D, Vollrath F, Shao Z Z. Eur Phys J E, 2005, 16(2): 199−206 doi: 10.1140/epje/e2005-00021-2

    15. [15]

      Miri V, Persyn O, Lefebvre J M, Seguela R. Eur Polym J, 2009, 45(3): 757−762 doi: 10.1016/j.eurpolymj.2008.12.008

    16. [16]

      Work R W. J Exp Biol, 1985, 118: 379−404

    17. [17]

      Shao Z Z, Vollrath F, Sirichaisit J, Young R J. Polymer, 1999, 40(10): 2493−2500 doi: 10.1016/S0032-3861(98)00475-3

    18. [18]

      Shao Z Z, Vollrath F, Sirichaisit J, Young R J. Int J Biol Macromol, 1999, 24(2-3): 203−210 doi: 10.1016/S0141-8130(98)00086-5

    19. [19]

      Guinea G V, Elices M, Perez-Rigueiro J, Plaza G R. J Exp Biol, 2005, 208(1): 25−30 doi: 10.1242/jeb.01344

    20. [20]

      Liu Y, Shao Z Z, Vollrath F. Nat Mater, 2005, 4(12): 901−905 doi: 10.1038/nmat1534

    21. [21]

      Gosline J M, Guerette P A, Ortlepp C S, Savage K N. J Exp Biol, 1999, 202(23): 3295−3303

    22. [22]

      Yang Y, Chen X, Shao Z Z, Zhou P, Porter D, Knight P D, Vollrath F. Adv Mater, 2005, 17(1): 84−88 doi: 10.1002/adma.200400344

    23. [23]

      Fu C J, Wang Y, Guan J, Chen X, Vollrath F, Shao Z Z. Mater Chem Front, 2019, 3(11): 2507−2513 doi: 10.1039/C9QM00282K

    24. [24]

      Volkov V, Ferreira A V, Cavaco-Paulo A. Macromol Mater Eng, 2015, 300: 1199−1216 doi: 10.1002/mame.201500179

    25. [25]

      Vollrath F, Holtet T, Thogersen H C, Frische S. Proc R Soc Lond B, 1996, 263: 147−151 doi: 10.1098/rspb.1996.0023

    26. [26]

      Ling S, Kaplan D L, Buehler M J. Nat Rev Mater, 2018, 3(4): 18016 doi: 10.1038/natrevmats.2018.16

    27. [27]

      Wang Q, Chen Q, Yang Y, Shao Z Z. Biomacromolecules, 2013, 14(1): 285−289 doi: 10.1021/bm301741q

    28. [28]

      Giesa T, Buehler M J. Annu Rev Biophys, 2013, 42: 651−673 doi: 10.1146/annurev-biophys-083012-130345

    29. [29]

      Yarger J L, Cherry B R, van der Vaart A. Nat Rev Mater, 2018, 3(3): 18008 doi: 10.1038/natrevmats.2018.8

    30. [30]

      Chen X, Shao Z, Marinkovic N S, Miller L M, Zhou P, Chance M R. Biophys Chem, 2001, 89(1): 25−34 doi: 10.1016/S0301-4622(00)00213-1

    31. [31]

      Sun Y Y, Shao Z Z, Ma M H, Hu P, Liu Y S, Yu T Y. J Appl Polym Sci, 1997, 65(5): 959−966 doi: 10.1002/(SICI)1097-4628(19970801)65:5<959::AID-APP14>3.0.CO;2-N

    32. [32]

      Sun Y Y, Shao ZZ, Hu P, Yu T Y. J Polym Sci, Part B: Polym Phys, 1997, 35(9): 1405−1414 doi: 10.1002/(SICI)1099-0488(19970715)35:9<1405::AID-POLB10>3.0.CO;2-A

    33. [33]

      Li M, Lu S, Wu Z, Yan, H J, Mo J Y, Wang L H. J Appl Polym Sci, 2001, 79(12): 2185−2191 doi: 10.1002/1097-4628(20010321)79:12<2185::AID-APP1026>3.0.CO;2-3

    34. [34]

      Mathur A B, Tonelli A, Rathke T, Hudson S. Biopolymers, 1997, 42(1): 61−74 doi: 10.1002/(SICI)1097-0282(199707)42:1<61::AID-BIP6>3.0.CO;2-#

    35. [35]

      Freddi G, Pessina G, Tsukada M. Int J Biol Macromol, 1999, 24(2-3): 251−263 doi: 10.1016/S0141-8130(98)00087-7

    36. [36]

      Xu Y, Zhang Y, Shao H, Hu X C. Int J Biol Macromol, 2005, 35(3-4): 155−161 doi: 10.1016/j.ijbiomac.2004.11.008

    37. [37]

      Phillips D M, Drummy L F, Conrady D G, Fox D M, Naik R R, Stone M O, Trulove P C, de Long H C, Mantz R A. J Am Chem Soc, 2004, 126(44): 14350−14351 doi: 10.1021/ja046079f

    38. [38]

      Zhang C, Chen X, Shao Z Z. ACS Biomater Sci Eng, 2016, 2(1): 12−18 doi: 10.1021/acsbiomaterials.5b00149

    39. [39]

      Holland C, Terry E, Porter D, Vollrath F. Nat Mater, 2006, 5(11): 870−874 doi: 10.1038/nmat1762

    40. [40]

      Wang Q, Yang Y H, Chen X, Shao Z Z. Biomacromolecules, 2012, 13(6): 1875−1881 doi: 10.1021/bm300387z

    41. [41]

      Yao M, Su D H, Wang W Q, Chen X, Shao Z Z. ACS Appl Mater Interfaces, 2018, 10(44): 38466−38475 doi: 10.1021/acsami.8b14521

    42. [42]

      Kratky O, Schauenstein E, Sekora A. Nature, 1950, 165(4191): 319−320 doi: 10.1038/165319a0

    43. [43]

      He S J, Valluzzi R, Gido S P. Int J Biol Macromol, 1999, 24(2–3): 187−195 doi: 10.1016/S0141-8130(99)00004-5

    44. [44]

      Asakura T, Demura M, Date T, Miyashita N, Ogawa K, Williamson M P. Biopolymers, 1997, 41(2): 193−203 doi: 10.1002/(SICI)1097-0282(199702)41:2<193::AID-BIP6>3.0.CO;2-O

    45. [45]

      Asakura T, Kuzuhara A, Tabeta R, Saito H. Macromolecules, 1985, 18(10): 1841−1845 doi: 10.1021/ma00152a009

    46. [46]

      Asakura T, Murakami T. Macromolecules, 1985, 18(12): 2614−2619 doi: 10.1021/ma00154a043

    47. [47]

      Gong Z G, Huang L, Yang Y H, Chen X, Shao Z Z. Chem Commun, 2009, (48): 7506−7508 doi: 10.1039/b914218e

    48. [48]

      Valluzzi R, Gido S P, Zhang W P, Muller W S, Kaplan D L. Macromolecules, 1996, 29(27): 8606−8614 doi: 10.1021/ma9517759

    49. [49]

      Shao Zhengzhong(邵正中). Silkworm Silk, Spider Silk and Their Proteins(蚕丝、蜘蛛丝及其丝蛋白). Beijing(北京): Chemical Industry Press(化学工业出版社), 2015. 125

    50. [50]

      Jin H J, Kaplan D L. Nature, 2003, 424(6952): 1057−1061 doi: 10.1038/nature01809

    51. [51]

      Lu Q, Hu X, Wang X Q, Kluge J A, Lu S Z, Cebe P, Kaplan D L. Acta Biomater, 2010, 6(4): 1380−1387 doi: 10.1016/j.actbio.2009.10.041

    52. [52]

      Yang Y H, Shao Z Z, Chen X, Zhou P. Biomacromolecules, 2004, 5(3): 773−779 doi: 10.1021/bm0343848

    53. [53]

      Matsumoto A, Chen J S, Collette A L, Kim U J, Altman G H, Cebe P, Kaplan D L. J Phys Chem B, 2006, 110(43): 21630−21638 doi: 10.1021/jp056350v

    54. [54]

      Hanawa T, Watanabe A, Tsuchiya T, Ikoma T, Hidaka M, Sugihara M. Chem Pharm Bull, 1995, 43(2): 284−288 doi: 10.1248/cpb.43.284

    55. [55]

      Kim U J, Park J Y, Li C M, Jin H J, Valluzzi R, Kaplan D L. Biomacromolecules, 2004, 5(3): 786−792 doi: 10.1021/bm0345460

    56. [56]

      Wang X, Kluge J A, Leisk G G, Kaplan D L. Biomaterials, 2008, 29(8): 1054−1064 doi: 10.1016/j.biomaterials.2007.11.003

    57. [57]

      Yucel T, Cebe P, Kaplan D L. Biophys J, 2009, 97(7): 2044−2050 doi: 10.1016/j.bpj.2009.07.028

    58. [58]

      Ling S J, Li C X, Adamcik J, Shao Z Z, Chen X, Mezzenga R. Adv Mater, 2014, 26(26): 4569−4574 doi: 10.1002/adma.201400730

    59. [59]

      Wang L J, Xie H G, Qiao X Y, Goffin A, Hodgkinson T, Yuan X F, Sun K, Fuller G G. Langmuir, 2012, 28(1): 459−467 doi: 10.1021/la2041373

    60. [60]

      Kharlampieva E, Zimnitsky D, Gupta M, Bergman K N, Kaplan D L, Naik R R, Tsukruk V V. Chem Mater, 2009, 21(13): 2696−2704 doi: 10.1021/cm900073t

    61. [61]

      Cheng C, Shao Z Z, Vollrath F. Adv Funct Mater, 2008, 18(15): 2172−2179 doi: 10.1002/adfm.200701130

    62. [62]

      Wen Jianchuan(文建川), Yao Jinrong(姚晋荣), Shao Zhenzhong(邵正中). Acta Polymerica Sinica(高分子学报), 2011, (1): 12−23

    63. [63]

      Luo K Y, Yang Y H, Shao Z Z, Adv Funct Mater. 2016, 26(6): 872 – 880

    64. [64]

      Li Z, Zheng Z K, Yang Y H, Fang G Q, Yao J R, Shao Z Z, Chen X. ACS Sustainable Chem Eng, 2016, 4(3): 1500−1506 doi: 10.1021/acssuschemeng.5b01463

    65. [65]

      Su D H, Yao M, Liu J, Zhong Y M, Chen X, Shao Z Z. ACS Appl Mater Interfaces, 2017, 9 (20): 17489−17498 doi: 10.1021/acsami.7b04623

    66. [66]

      Mi R X, Liu Y X, Chen X, Shao Z Z. Nanoscale, 2016, 8(48): 20096−20102 doi: 10.1039/C6NR07359J

    67. [67]

      Su D H, Jiang L B, Chen X, Dong J, Shao Z Z. ACS Appl Mater Interfaces, 2016, 8(15): 9619−9628 doi: 10.1021/acsami.6b00891

    68. [68]

      Dong T, Mi R X, Wu M, Zhong N P, Zhao X, Chen X, Shao Z Z. J Mater Chem B, 2019, 7(27): 4328−4337 doi: 10.1039/C9TB00783K

    69. [69]

      Fang G Q, Zheng Z K, Yao J R, Chen M, Tang Y Z, Zhong J J, Qi Z M, Li Z, Shao Z Z, Chen X. J Mater Chem B, 2015, 3(19): 3940−3947 doi: 10.1039/C5TB00448A

    70. [70]

      Dong Q L, Cai J Y, Wang H P, Chen S Y, Liu Y Z, Yao J R, Shao Z Z, Chen X. Acta Biomater, 2020, 106: 102−113 doi: 10.1016/j.actbio.2020.01.045

    71. [71]

      Wang H P, Dong Q L, Yao J R, Shao Z Z, Ma J M, Chen X. Biomacromolecules, 2020, 21(4): 1596−1603 doi: 10.1021/acs.biomac.0c00170

    72. [72]

      Martel A, Burghammer M, Davies R J, Di Cola E, Vendrely C, Riekel C. J Am Chem Soc, 2008, 130: 17070−17074 doi: 10.1021/ja806654t

    73. [73]

      Wang S H, Xu T, Yang Y H, Shao Z Z. ACS Appl Mater Interfaces, 2015, 7(38): 21254−21262 doi: 10.1021/acsami.5b05335

    74. [74]

      Wu M, Yang W H, Chen S, Yao J R, Shao Z Z, Chen X. J Mater Chem B, 2018, 6(8): 1179−1186 doi: 10.1039/C7TB03113K

    75. [75]

      Tian Y, Jiang X J, Chen X, Shao Z Z, Yang W L. Adv Mater, 2014, 26(43): 7393−7398 doi: 10.1002/adma.201403562

    1. [1]

      陶瑜顾恺邵正中 . 用于压力传感的还原氧化石墨烯/丝蛋白基多孔复合材料. 高分子学报, 2021, 52(2): 158-165. doi: 10.11777/j.issn1000-3304.2020.20151

    2. [2]

      钟佳佳邵正中 . 丝蛋白对磷酸钙生长及其结晶的调控. 高分子学报, 2014, (10): 1428-1434. doi: 10.11777/j.issn1000-3304.2014.14155

    3. [3]

      袁青青姚晋荣邵正中 . 蚕丝纤维/丝蛋白复合材料力学性能的优化. 高分子学报, 2011, (11): 1329-1335. doi: 10.3724/SP.J.1105.2011.11040

    4. [4]

      胡蓉辛德华秦安军唐本忠 . 聚集诱导发光聚合物. 高分子学报, 2018, (2): 132-144. doi: 10.11777/j.issn1000-3304.2018.17280

    5. [5]

      董思远朱平刘继广王笃金董侠 . 透明聚酰胺聚集态结构与拉伸性能的热处理效应. 高分子学报, 2019, 50(2): 189-198. doi: 10.11777/j.issn1000-3304.2018.18198

    6. [6]

      周臣旭董思远朱平刘继广董侠王笃金 . 线性脂环族聚酰胺化学结构对其力学和光学性能的影响. 高分子学报, 2021, 52(3): 297-303. doi: 10.11777/j.issn1000-3304.2020.20200

    7. [7]

      蔡志锋王庆印刘绍英王公应 . 用于合成聚对苯二甲酸乙二醇酯的KF/Al2O3催化剂研究. 高分子学报, 2018, 0(9): 1184-1193. doi: 10.11777/j.issn1000-3304.2018.18014

    8. [8]

      王莉莉朱平董侠王笃金 . 长碳链聚酰胺及其共聚物的拉伸诱导结晶. 高分子学报, 2020, 51(1): 1-11. doi: 10.11777/j.issn1000-3304.2020.19165

    9. [9]

      李其易雷霆姚泽凡王婕妤裴坚 . 共轭高分子的多级组装. 高分子学报, 2019, 50(1): 1-12. doi: 10.11777/j.issn1000-3304.2018.18223

    10. [10]

      白兰翟磊何民辉王畅鸥莫松范琳 . 高温热处理对聚酰胺-酰亚胺薄膜超低热膨胀行为的影响. 高分子学报, 2019, 50(12): 1305-1313. doi: 10.11777/j.issn1000-3304.2019.19099

    11. [11]

      高诗佳王鑫张育林张赛乔文强王植源 . 光敏层厚度与退火温度调控对聚3-己基噻吩光电探测器性能的影响. 高分子学报, 2020, 51(4): 338-345. doi: 10.11777/j.issn1000-3304.2019.19206

    12. [12]

      彭湘红张俐娜潘雪龙 . 壳聚糖-丝心蛋白包药微球的结构和释放性能研究. 高分子学报, 2000, (4): 502-505.

    13. [13]

      于同隐李光宪 . 丝蛋白纤维机理的模型——应力作用下丝蛋白构象的转变. 高分子学报, 1993, (4): 415-422.

    14. [14]

      李鑫李瑞霞吴大诚孙琳宋青国凤敏吴立衡 . 涤纶工业丝等温收缩中的结构变化. 高分子学报, 2001, (1): 84-89.

    15. [15]

      范振国陈文欣魏世洋刘腾刘四委池振国张艺许家瑞 . 聚酰亚胺介电常数的定量构效关系研究及其低介电薄膜的分子结构设计. 高分子学报, 2019, 50(2): 179-188. doi: 10.11777/j.issn1000-3304.2018.18183

    16. [16]

      徐涛于杰雷华金志浩 . 聚丙烯材料聚集态结构的定量表征及其与力学性能的关系. 高分子学报, 2001, (2): 147-152.

    17. [17]

      张旺玺王艳芝王延相蔡华苏李木森 . NiSO4改性对聚丙烯腈原丝及其碳纤维结构与性能的影响. 高分子学报, 2001, (5): 670-673.

    18. [18]

      黄雪英莫志深高焕王龙泉牟忠诚朱诚身 . 尼龙-1010的聚集态结构. 高分子学报, 1994, (1): 60-64.

    19. [19]

      黄玉惠丛广民刘彦宋默 . 聚苯醚羧酸盐的聚集态结构. 高分子学报, 1991, (3): 345-349.

    20. [20]

      王冰花陈金龙张彬 . 原子力显微镜在高分子表征中的应用. 高分子学报, 2021, 52(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20259

  • Figure 1.  (a) Comparison of silks drawn at different speeds from the silkworm Bombyx mori (Reprinted with permission from Ref.[11]; Copyright (2002) Nature Publishing Group); (b) Comparison of stress-strain curves between degummed and ungummed silk; (c) Linear relationship between the relative humidity and transition temperature. The solid line is a best fit [Tg = 214 − 2.6H (R=0.99)], to the data points, where Tg is the transition temperature and H is relative humidity. Left inset is the representative stress-strain curve of water contracted A. pernyi silk tested at 20 °C, 50% RH; right inset is the representative stress-strain curve of water contracted A. pernyi silk tested in water at 25 °C; (d) General modulus-(TgT) master curve for A. pernyi silk (Reprinted with permission from Ref.[12]; Copyright (2009) American Chemical Society).

    Figure 2.  The two states S1 and S2 and the stress-strain curves of their representative spider silks. (a) Stress-strain curves of spider silk at selected temperatures (Reprinted with permission from Ref.[20]; Copyright (2005) Nature Publishing Group); (b) The morphology of single filaments of silks fractured in liquid nitrogen (Reprinted with permission from Ref.[22]; Copyright (2005) Wiley-VCH Verlag GmbH & Co. KGaA); (c) Antherea pernyi silk fracture morphology (left) and representative stress-strain curve (right) broken at cryogenic temperature −196 °C with different atmospheric treatments: (i) dry nitrogen purge for 20 min; (ii) 43% relative humidity under room conditions; (iii) moisture saturated nitrogen gas purge for 20 min. (Reprinted with permission from Ref.[23]; Copyright (2019) The Royal Society of Chemistry); (d) Schematic representation of the deduced SF structure. Insets show the fibril over all structure and the fine β-sheet antiparallel alignment of SF polypeptide chains (Reprinted with permission from Ref.[24]; Copyright (2019) Wiley-VCH Verlag GmbH & Co. KGaA).

    Figure 3.  Scheme of regenerated silk fibroin aqueous solution prepared by dissolving the fiber with LiBr solution.

    Figure 4.  (a) Schematic diagram of the folded conformation of protein molecular chains; (b) (i) Cryo-TEM image of RSF gel (incubated 50 min); (ii) Tentative structural model for the molecular arrangement of the ninth crystalline domain with repetitive sequence (R9) in a cross-β fibril of fibroin. Sub-domain containing GAGAGS (green) and GAGAGY (brown), as well as a nonrepetitive sequence with charged residues (blue) (Reprinted with permission from Ref.[47]; Copyright (2009) The Royal Society of Chemistry); (c) The basic properties of silk I and silk II structure and mutual transformation under certain conditions; (d) Schematic illustration of mechanism of silk gelation. The gelation process contains two kinetic steps: a) structural change from random coil to β-sheet with some inter-chain physical cross-links occurring in a short timeframe; b) β-sheet structure extended, large quantity of inter-chain β-sheet cross-links formed, and molecules organized to gel network over a relatively long timeframe (Reprinted with permission from Ref.[53]; Copyright (2006) American Chemical Society).

    Figure 5.  (a) Schematic illustration the robust protein hydrogels from silkworm silk (Reprinted with permission from Ref.[64]; Copyright (2016) American Chemical Society); (b) Schematic illustration of the silk fibroin hydrogel through restricting the growth of β-sheet domains (Reprinted with permission from Ref.[65]; Copyright (2017) American Chemical Society); (c) Images of the bioprinted (A1) RSF microhydrogel, (B1) RSF hydrogel and (C1) RSF lyophilized scaffold in Chinese character “silk”; (A2) 3D printing process of the RSF microhydrogel; (B2) Micro-CT reconstruction of the bioprinted RSF hydrogel; (C2) FE-SEM image of the bioprinted RSF scaffold; Inset: The porous structure of the scaffold (Reprinted with permission from Ref. [66]; Copyright (2016) The Royal Society of Chemistry).

    Figure 6.  (a) Scheme of tough protein-carbon nanotube hybrid fibers comparable to natural spider silks (Reprinted with permission from Ref.[69]; Copyright (2015) The Royal Society of Chemistry) and (b) artificial ligament made from silk protein/Laponite hybrid fibers (Reprinted with permission from Ref.[70]; Copyright (2020) Elsevier); (c) Optical image (i) and infrared images at 0 s (ii), 10 s (iii), and 200 s (iv) under irradiation of simulated sunlight of RSF/CuS fiber cross embroidered cotton fabric (Reprinted with permission from Ref.[71]; Copyright (2020) American Chemical Society).

    Figure 7.  (a) Scheme of colloidal stability of silk fibroin nanoparticles coated with cationic polymer for effective drug delivery (Reprinted with permission from Ref.[73]; Copyright (2015) American Chemical Society); (b) Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process (Reprinted with permission from Ref.[74]; Copyright (2018) The Royal Society of Chemistry) and (c) Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer (Reprinted with permission from Ref.[75]; Copyright (2014) Wiley-VCH Verlag GmbH & Co. KGaA).

  • 加载中
图(7)
计量
  • PDF下载量:  2
  • 文章访问数:  1540
  • HTML全文浏览量:  932
  • 引证文献数: 0
文章相关
  • 通讯作者:  邵正中, zzshao@fudan.edu.cn
  • 收稿日期:  2020-06-01
  • 修稿日期:  2020-07-12
  • 刊出日期:  2021-01-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计