ISSN 1000-3304CN 11-1857/O6

响应性交联液晶高分子仿生致动器的研究进展

王格格 张居中 刘水任 王向红 刘旭影 陈金周

引用本文: 王格格, 张居中, 刘水任, 王向红, 刘旭影, 陈金周. 响应性交联液晶高分子仿生致动器的研究进展[J]. 高分子学报, 2021, 52(2): 124-145. doi: 10.11777/j.issn1000-3304.2020.20179 shu
Citation:  Ge-ge Wang, Ju-zhong Zhang, Shui-ren Liu, Xiang-hong Wang, Xu-ying Liu and Jin-zhou Chen. Research Progress in Biomimetic Actuators of Responsive Cross-linked Liquid Crystal Polymer[J]. Acta Polymerica Sinica, 2021, 52(2): 124-145. doi: 10.11777/j.issn1000-3304.2020.20179 shu

响应性交联液晶高分子仿生致动器的研究进展

    作者简介: 王向红,女,1992年生. 2019年7月毕业于中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,获博士学位;2012年7月毕业于郑州大学材料科学与工程学院,高分子材料专业,获学士学位. 2019年8月至今在郑州大学材料科学与工程学院工作. 主要研究方向:智能响应型抗菌材料、医用材料表界面、信息功能材料. 对包装材料或医疗器械表面进行改性,通过响应特定的刺激,如电、磁、光、温度、酶、酸等,及时检测细菌的入侵,实现材料抗菌的按需启动和优良的生物相容性. 在相关研究领域以第一作者发表代表性论文5篇,其中包括《ACS Applied Materials & Interfaces》和《Journal of Materials Chemistry B》等;刘旭影,男,1985年生. 郑州大学材料科学与工程学院教授、博导. 2014年在东京工业大学综合理工研究科获得博士学位,同年进入日本国家物质材料科学研究所(NIMS),历任博后研究员、ICYS研究员(Tenure Track职位)等职. 2019年4月为郑州大学校特聘教授. 主要研究方向: 液晶半导体、液晶弹性体、印刷柔性电子. 近年来,在液晶半导体和印刷电子等方面取得了一系列研究成果,其中所开发的超高分辨印刷电子技术和超高载流子迁移率器件制备技术获得了国际信息显示技术协会两项金奖和国际微纳加工会议“优秀青年研究者奖”. 在国际学术期刊上,如《Advanced Materials》《NPG Asia Materials》和《Chemistry of Materials》共发表研究论文40篇,申请发明专利5项. 另外,作为项目负责人或主要参与人员获得国家重点研发计划,NEDO,CREST,日本文部科学省GCOE(全球精英计划,能源类)和学术振兴会HAKENHI (Young Scientist B)等多项自然科学基金资助;
    通讯作者: 王向红, E-mail: wangxh@zzu.edu.cn 刘旭影, E-mail: liuxy@zzu.edu.cn
  • 基金项目: 国家重点研发计划(项目号 2018YFd0400702)资助

摘要: 交联液晶高分子兼具液晶取向有序性和交联聚合物熵弹性等特点,能够以动态可调节和可逆的方式来模仿生物体的行为,在仿生器件、柔性机器人、智能表面、生物医药等领域具有良好的应用前景. 本综述总结了近几年智能响应性交联液晶高分子在仿生致动器方面的研究进展,从响应性交联液晶高分子的结构和驱动机理出发,讨论了响应性交联液晶高分子的合成工艺、制备技术和成型方法,以及响应性交联液晶高分子对光、热、磁、湿度的响应. 此外,介绍了响应性交联液晶高分子致动器在柔性机器人、人工肌肉、微流体运输等领域的应用. 最后,对响应性交联液晶高分子的发展前景进行了展望. 这项工作主要讨论了响应性交联液晶高分子,旨在为具有新颖功能和更有挑战性的智能微型致动器提供新的设计思路.

English

    1. [1]

      Yang Qi(杨奇). Preparation and performance of flexible drive based on ethylene-butadiene copolymer(基于乙烯-丁二烯共聚物柔性驱动器的制备与性能). Doctoral Dissertation of University of Science and Technology of China(中国科学技术大学博士论文), 2019

    2. [2]

      Schiphorst J T, Coleman S, Mond J E, Azouz A B, Diamond D, Schenning A. Chem Mater, 2015, 27(17): 5925−5931 doi: 10.1021/acs.chemmater.5b01860

    3. [3]

      Meng H, Li G. Polymer, 2013, 54(9): 2199−2221 doi: 10.1016/j.polymer.2013.02.023

    4. [4]

      He Z, Satarkar N, Xie T, Cheng Y T, Hilt J Z. Adv Mater, 2011, 23(28): 3192−3196 doi: 10.1002/adma.201100646

    5. [5]

      Xie X, Qu L, Zhou C, Yan L, Zhu J, Bai H, Shi G Q, Dai L M. ACS Nano, 2010, 4(10): 6050−6054 doi: 10.1021/nn101563x

    6. [6]

      Liu X, Wei R, Hoang P T, Wang X, Liu T, Keller P. Adv Funct Mater, 2015, 25(20): 3022−3032 doi: 10.1002/adfm.201500443

    7. [7]

      Lee W E, Jin Y J, Park L S, Kwak G. Adv Mater, 2012, 24(41): 5604−5609 doi: 10.1002/adma.201201967

    8. [8]

      Ilievski F, Mazzeo A D, Shepherd R F, Chen X, Whitesides G M. Angew Chem, 2011, 123(8): 1930−1935 doi: 10.1002/ange.201006464

    9. [9]

      Harris K D, Bastiaansen C W M, Lub J, Broer D J. Nano Lett, 2005, 5(9): 1857−1860 doi: 10.1021/nl0514590

    10. [10]

      Chen M, Yao B, Kappl M, Liu S, Yuan J, Berger R, Zhang F, Butt H, Butt H, Liu Y, Wu S. Adv Funct Mater, 2020, 30(4): 1906752 doi: 10.1002/adfm.201906752

    11. [11]

      Haberl J M, Sanchez F A, Mihut A M, Dietsch H, Hirt A M, Mezzenga R. Nanoscale, 2013, 5(12): 5539−5548 doi: 10.1039/c3nr01016c

    12. [12]

      Lahikainen M, Zeng H, Priimagi A. Nat Commun, 2018, 9: 4148 doi: 10.1038/s41467-018-06647-7

    13. [13]

      White T J, Broer D J. Nat Mater, 2015, 14(11): 1087−1098 doi: 10.1038/nmat4433

    14. [14]

      Pang X, Lv J, Zhu C, Qin L, Yu Y. Adv Mater, 2019, 31(52): 1904224 doi: 10.1002/adma.201904224

    15. [15]

      Liu Y, Xu B, Sun S, Wei J, Wu L, Yu Y. Adv Mater, 2017, 29(9): 1604792 doi: 10.1002/adma.201604792

    16. [16]

      Roach D J, Yuan C, Kuang X, Li V, Blake P, Romero M, Hammel I, Yu K, Qi H J. ACS Appl Mater Interfaces, 2019, 11(21): 19514−19521 doi: 10.1021/acsami.9b04401

    17. [17]

      Liu D, Broer D J. Angew Chem, 2014, 126(18): 4630−4634 doi: 10.1002/ange.201400370

    18. [18]

      Lopez V M, Liu D, Broer D J, Sanchez S C. Macromol Rapid Commun, 2018, 39(5): 1700710 doi: 10.1002/marc.201700710

    19. [19]

      Ohm C, Brehmer M, Zentel R. Adv Mater, 2010, 22(31): 3366−3387 doi: 10.1002/adma.200904059

    20. [20]

      Donovan B R, Matavulj V M, Ahn S K, Guin T, White T J. Adv Mater, 2019, 31(2): 1805750 doi: 10.1002/adma.201805750

    21. [21]

      Ge F, Yang R, Tong X, Camerel F, Zhao Y. Angew Chem, 2018, 130(36): 11932−11937 doi: 10.1002/ange.201807495

    22. [22]

      Qing Xin(卿鑫), Lv Jiuan(吕久安), Yu Yanlei(俞燕蕾). Acta Polymerica Sinica(高分子学报), 2017, (11): 1679−1705 doi: 10.11777/j.issn1000-3304.2017.17196

    23. [23]

      Broer D J, Finkelmann H, Kondo K. Makromol Chem Phys, 1989, 189(1): 185−194 doi: 10.1002/macp.1988.021890117

    24. [24]

      Lee K M, Bunning T J, White T J. Adv Mater, 2012, 24(21): 2839−2843 doi: 10.1002/adma.201200374

    25. [25]

      Kupfer J, Finkelmann H. Macromol Rapid Commun, 1991, 12(12): 717−726 doi: 10.1002/marc.1991.030121211

    26. [26]

      Nishikawa E, Finkelmann H, Brand H R. Macromol Rapid Commun, 1997, 18(2): 65 – 71

    27. [27]

      Wen Z, Yang K, Raquez J M. Molecules, 2020, 25(5): 1241 doi: 10.3390/molecules25051241

    28. [28]

      Deng W, Li M H, Wang X, Keller P. Liq Cryst, 2009, 36(10): 1023−1029

    29. [29]

      Liu Y, Wu W, Wei J, Yu Y. ACS Appl Mater Interfaces, 2017, 9(1): 782−789 doi: 10.1021/acsami.6b11550

    30. [30]

      Naka Y, Mamiya J I, Shishido A, Washio M, Ikeda T. J Mater Chem, 2011, 21(6): 1681−1683 doi: 10.1039/C0JM03901B

    31. [31]

      Ube T, Ikeda T. Adv Opt Mater, 2019, 7(16): 1900380 doi: 10.1002/adom.201900380

    32. [32]

      Cheng Z, Ma S, Zhang Y, Huang S, Chen Y, Yu H. Macromolecules, 2017, 50(21): 8317−8324 doi: 10.1021/acs.macromol.7b01741

    33. [33]

      Li X, Wen R, Zhang Y, Zhu L, Zhang B, Zhang H. J Mater Chem, 2009, 19(2): 236−245 doi: 10.1039/B812291A

    34. [34]

      Han G, Zhang H, Chen J, Sun Q, Zhang Y, Zhang H. New J Chem, 2015, 39(2): 1410−1420 doi: 10.1039/C4NJ01658K

    35. [35]

      Lv J, Wang W, Wu W, Yu Y. J Mater Chem C, 2015, 3(26): 6621−6626 doi: 10.1039/C5TC00595G

    36. [36]

      Yaroshchuk O, Reznikov Y. J Mater Chem, 2012, 22(2): 286−300 doi: 10.1039/C1JM13485J

    37. [37]

      Mamiya J-i, Yoshitake A, Kondo M, Yu Y, Ikeda T. J Mater Chem, 2008, 18(1): 63−65 doi: 10.1039/B715855F

    38. [38]

      Chen Qiaomei(陈巧梅), Yang Yang(杨洋), Wei Yan(危岩), Ji Yan(吉岩). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 451−468 doi: 10.11777/j.issn1000-3304.2019.19004

    39. [39]

      Lu X, Zhang H, Fei G, Yu B, Tong X, Xia H, Zhao Y. Adv Mater, 2018, 30(14): 1706597 doi: 10.1002/adma.201706597

    40. [40]

      Wen Z, McBride M K, Zhang X, Han X, Martinez A M, Shao R, Zhu C. Macromolecules, 2018, 51(15): 5812−5819 doi: 10.1021/acs.macromol.8b01315

    41. [41]

      Saed M O, Gablier A, Terentejv E M. Adv Funct Mater, 2020, 30(3): 1906458 doi: 10.1002/adfm.201906458

    42. [42]

      Wang Z, He Q, Wang Y, Cai S. Soft Matter, 2019, 15(13): 2811−2816 doi: 10.1039/C9SM00322C

    43. [43]

      Wang Z, Tian H, He Q, Cai S. ACS Appl Mater Interfaces, 2017, 9(38): 33119−33128 doi: 10.1021/acsami.7b09246

    44. [44]

      McBride M K, Hendrikx M, Liu D, Worrell B T, Broer D J, Bowman C N. Adv Mater, 2017, 29(17): 1606509 doi: 10.1002/adma.201606509

    45. [45]

      McBride M K, Martinez A M, Cox L, Alim M, Childress K, Beiswinger M, Podgorski M, Worrell B T, Killgore J, Bowman, C N. Sci Adv, 2018, 4(8): eaat4634 doi: 10.1126/sciadv.aat4634

    46. [46]

      Pei Z, Yang Y, Chen Q, Terentjev E M, Wei Y, Ji Y. Nat Mater, 2014, 13(1): 36−41 doi: 10.1038/nmat3812

    47. [47]

      Ube T, Kawasaki K, Ikeda T. Adv Mater, 2016, 28(37): 8212−8217 doi: 10.1002/adma.201602745

    48. [48]

      Han G, Nie J, Zhang H. Polym Chem, 2016, 7(32): 5088−5092 doi: 10.1039/C6PY01100D

    49. [49]

      Li Y, Zhang Y, Rios O, Keum J K, Kessler M R. RSC Adv, 2017, 7(59): 37248−37254 doi: 10.1039/C7RA06343A

    50. [50]

      Guo H, Han Y, Zhao W, Yang J, Zhang L. Nat Commun, 2020, 11: 2037 doi: 10.1038/s41467-020-15949-8

    51. [51]

      Shi C Y, Zhang Q, Yu C Y, Rao S J, Yang S, Tian H, Qu D H. Adv Mater, 2020, 32(23): 2000345 doi: 10.1002/adma.202000345

    52. [52]

      Qing X, Liu Y, Wei J, Zheng R, Zhu C, Yu Y. Adv Opt Mater, 2019, 7(3): 1801494 doi: 10.1002/adom.201801494

    53. [53]

      Van Oosten C L, Bastiaansen C W, Broer D J. Nat Mater, 2009, 8(8): 677−682 doi: 10.1038/nmat2487

    54. [54]

      Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma D S. Adv Mater, 2015, 27(26): 3883−3887 doi: 10.1002/adma.201501446

    55. [55]

      Auguste A D, Ward J W, Hardin J O, Kowalski B A, Guin T C, Berrigan J D, White T J. Adv Mater, 2018, 30(35): 1802438 doi: 10.1002/adma.201802438

    56. [56]

      Steinbacher J L, McQuade D T. Polym Chem, 2006, 44(22): 6505−6533 doi: 10.1002/pola.21630

    57. [57]

      Ohm C, Serra C, Zentel R. Adv Mater, 2009, 21(47): 4859−4862 doi: 10.1002/adma.200901522

    58. [58]

      Buguin, A, Li M H, Silberzan P, Ladoux B, Keller P. J Am Chem Soc, 2006, 128(4): 1088−1089 doi: 10.1021/ja0575070

    59. [59]

      Shahsavan H, Yu L, Jákli A, Zhao B X. Soft Matter, 2017, 13(44): 8006−8022 doi: 10.1039/C7SM01466J

    60. [60]

      Ren L, Li B, He Y, Song Z, Zhou X, Liu Q, Ren L. ACS Appl Mater Interfaces, 2020, 12(13): 15562−15572 doi: 10.1021/acsami.0c00027

    61. [61]

      Kuang X, Roach D J, Wu J T, Hamel C M, Ding Z, Wang T J, Dunn M L, Qi H J. Adv Funct Mater, 2019, 29(2): 18052902

    62. [62]

      Ula S W, Traugutt N A, Volpe R H, Patel R R, Yu K, Yakacki C M. Liq Cryst Rev, 2018, 6(1): 78−107 doi: 10.1080/21680396.2018.1530155

    63. [63]

      Kotikian A, Truby R L, Boley J W, White T J, Lewis J A. Adv Mater, 2018, 30(10): 1870063 doi: 10.1002/adma.201870063

    64. [64]

      Sitti M, Wiersma D S. Adv Mater, 2020, 32(20): 1906766 doi: 10.1002/adma.201906766

    65. [65]

      Shang Y, Wang J, Ikeda T, Jiang L. J Mater Chem C, 2019, 7(12): 3413−3428 doi: 10.1039/C9TC00107G

    66. [66]

      Xia Y, Cedillo S G, Kamien R D, Yang S. Adv Mater, 2016, 28(43): 9637−9643 doi: 10.1002/adma.201603751

    67. [67]

      Xia Y, Zhang X Y, Yang S. Angew Chem Int Ed, 2018, 130(20): 5767−5770 doi: 10.1002/ange.201800366

    68. [68]

      Cheng Z, Wang T, Li X, Zhang Y, Yu H. ACS Appl Mater Interfaces, 2015, 7(49): 27494−27501 doi: 10.1021/acsami.5b09676

    69. [69]

      Yang Y, Zhan W J, Peng C G, He C G, Pang X L, Shi D, Jiang T, Lin Z Q. Adv Mater, 2015, 27(41): 6376−6381 doi: 10.1002/adma.201503680

    70. [70]

      Ji Y, Huang Y Y, Rungsawang R, Terentjev E M. Adv Mater, 2010, 22(31): 3436−3440 doi: 10.1002/adma.200904103

    71. [71]

      Camargo C J, Campanella H, Marshall J E, Torras N, Zinoviev K, Terentjev E M, Esteve J. Macromol Rapid Commun, 2011, 32(24): 1953−1959 doi: 10.1002/marc.201100578

    72. [72]

      Yang Y, Pei Z, Li Z, Wei Y, Ji Y. J Am Chem Soc, 2016, 138(7): 2118−2121 doi: 10.1021/jacs.5b12531

    73. [73]

      Wu Y, Yang Y, Qian X, Chen Q, Wei Y, Ji Y. Angew Chem Int Ed, 2020, 59(12): 4778−4784 doi: 10.1002/anie.201915694

    74. [74]

      Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X. Chem Commun, 2015, 51(60): 12126−12129 doi: 10.1039/C5CC02599K

    75. [75]

      Lan R, Sun J, Shen C, Huang R, Zhang Z, Zhang L, Wang L, Yang H. Adv Mater, 2020, 32(14): 1906319 doi: 10.1002/adma.201906319

    76. [76]

      Liu L, Liu M H, Deng L L, Lin B P, Yang H. J Am Chem Soc, 2017, 139(33): 11333−11336 doi: 10.1021/jacs.7b06410

    77. [77]

      Lu H F, Wang M, Chen X M, Lin B P, Yang H. J Am Chem Soc, 2019, 141(36): 14364−14369 doi: 10.1021/jacs.9b06757

    78. [78]

      Iamsaard S, Anger E, Asshoff S J, Depauw A, Fletcher S P, Katsonis N. Angew Chem Int Ed, 2016, 55(34): 9908−9912 doi: 10.1002/anie.201603579

    79. [79]

      Kumar K, Knie C, Bleger D, Peletier M A, Friedrich H, Hecht S, Broer D J. Nat Commun, 2016, 7: 11975

    80. [80]

      Gelebart A H, Bride M M, Schenning A P, Bowman C N, Broer D J. Adv Funct Mater, 2016, 26(29): 5322−5327 doi: 10.1002/adfm.201601221

    81. [81]

      Guin T, Settle M J, Kowalski B A, Auguste A D, Beblo R V, Reich G W, White T J. Nat Commun, 2018, 9: 2531 doi: 10.1038/s41467-017-02088-w

    82. [82]

      Wie J J, Shankar M R, White T J. Nat Commun, 2016, 7: 13260 doi: 10.1038/ncomms13260

    83. [83]

      Wang M, Lin B P, Yang H. Nat Commun, 2016, 7: 13981 doi: https://doi.org/10.1038/ncomms13981

    84. [84]

      Zuo B, Wang M, Lin B P, Yang H. Chem Mater, 2018, 30(21): 8079−8088 doi: 10.1021/acs.chemmater.8b04204

    85. [85]

      Wang M, Hu X B, Zuo B, Huang S, Chen X M, Yang H. Chem Commun, 2020, 56(55): 7597−7600 doi: 10.1039/D0CC02823A

    86. [86]

      Haberl, J M, Ferrer A S, Mihut A M, Dietsch H, Hirt A M, Mezzenga R. Adv Mater, 2013, .25(12): 1787−1791 doi: 10.1002/adma.201204406

    87. [87]

      Ditter D, Blümler P, Klöckner B, Hilgert J, Zentel R. Adv Funct Mater, 2019, 29(29): 1902454 doi: 10.1002/adfm.201902454

    88. [88]

      Wani O M, Verpaalen R, Zeng H, Priimagi A, Schenning A. Adv Mater, 2019, 31(2): 1805985 doi: 10.1002/adma.201805985

    89. [89]

      Lan R, Sun J, Shen C, Huang R, Zhang L, Yang H. Adv Funct Mater, 2019, 29(23): 1900013 doi: 10.1002/adfm.201900013

    90. [90]

      Zhou L, Liu Q, Lv X, Gao L, Fang S, Yu H. J Mater Chem C, 2016, 4(42): 9993−9997 doi: 10.1039/C6TC03556F

    91. [91]

      Tang R, Liu Z, Xu D, Liu J, Yu L, Yu H. ACS Appl Mater Interfaces, 2015, 7(16): 8393−8397 doi: 10.1021/acsami.5b01732

    92. [92]

      Hu J, Huang S, Yu M, Yu H. Adv Energy Mater, 2019, 9(37): 1901363 doi: 10.1002/aenm.201901363

    93. [93]

      Liu Xiyang(刘曦阳), Wang Xiaogong(王晓工). Acta Polymerica Sinica(高分子学报), 2017, (10): 1549−1556 doi: 10.11777/j.issn1000-3304.2017.17118

    94. [94]

      Ma S, Li X, Huang S, Hu J, Yu H. Angew Chem Int Ed, 2019, 58(9): 2655−2659 doi: 10.1002/anie.201811808

    95. [95]

      Zhang P, Wu B, Huang S, Cai F, Wang G, Yu H. Polymer, 2019, 178: 121644 doi: 10.1016/j.polymer.2019.121644

    96. [96]

      Lv X, Wang W, Yu H. Adv Eng Mater, 2019, 21(12): 1900977 doi: 10.1002/adem.201900977

    97. [97]

      Li X, Ma S, Hu J, Ni Y, Lin Z, Yu H. J Mater Chem C, 2019, 7(3): 622−629 doi: 10.1039/C8TC05186K

    98. [98]

      Lan R, Sun J, Shen C, Huang R, Zhang Z, Ma C, Bao J, Zhang L, Wang L, Yang D, Yang H. Adv Funct Mater, 2020, 30(19): 2000252 doi: 10.1002/adfm.202000252

    99. [99]

      Zuo B, Wang M, Lin B P, Yang H. Nat Commun, 2019, 10: 4539 doi: 10.1038/s41467-019-12583-x

    100. [100]

      Ware T H, McConney M E, Wie J J, Tondiglia V P, White T J. Science, 2015, 347(6225): 982−984 doi: 10.1126/science.1261019

    101. [101]

      Zeng H, Wasylczyk P, Cerretti G, Martella D, Parmeggiani C, Wiersma D S. Appl Phys Lett, 2015, 106(11): 111902 doi: 10.1063/1.4915268

    102. [102]

      Rogóż M, Zeng H, Xuan C, Wiersma D S, Wasylczyk P. Adv Opt Mater, 2016, 4(11): 1689−1694 doi: 10.1002/adom.201600503

    103. [103]

      Liu X Y, Kim S K, Wang X G. J Mater Chem B, 2016, 4: 7293−7302 doi: 10.1039/C6TB02372J

    104. [104]

      Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C. Nat Mater, 2016, 15(6): 647−653 doi: 10.1038/nmat4569

    105. [105]

      Gelebart A H, Jan M D, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B. Nature, 2017, 546(7660): 632−636 doi: 10.1038/nature22987

    106. [106]

      Wani O M, Zeng H, Priimagi A. Nat Commun, 2017, 8(1): 15546 doi: 10.1038/ncomms15546

    107. [107]

      Hu J, Li X, Ni Y, Ma S, Yu H. J Mater Chem C, 2018, 6(40): 10815−10821 doi: 10.1039/C8TC03693D

    108. [108]

      Wani O M, Zeng H, Wasylczyk P, Priimagi A. Adv Opt Mater, 2018, 6(1): 1700949 doi: 10.1002/adom.201700949

    109. [109]

      Zhang Y B, Wang Z H, Yang Y, Chen Q M, Qian X J, Wu Y H, Liang H, Xu Y S, Wei Y, Ji Y. Sci Adv, 2020, 6(9): eaay8606 doi: 10.1126/sciadv.aay8606

    110. [110]

      Tang Y, Chi Y, Sun J, Huang H, Maghsoudi O H, Spence A, Zhao J, Su J, Yin J. Sci Adv, 2020, 6(19): eaaz6912 doi: 10.1126/sciadv.aaz6912

    111. [111]

      Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv Mater, 2017, 29(30): 1701814 doi: 10.1002/adma.201701814

    112. [112]

      Wang M, Cheng Z, Zuo B, Chen X M, Huang S, Yang H. ACS Macro Lett, 2020, 9(6): 860−865 doi: 10.1021/acsmacrolett.0c00333

    113. [113]

      de Gennes P. CR Acad Sci Ser B, 1975, 281(101): 2

    114. [114]

      Wermter H, Finkelmann H. e-Polymer, 2001, 1(1): 1−13 doi: 10.1515/epoly.2001.1.1.111

    115. [115]

      Lancia F, Ryabchun A, Nguindjel A D, Kwangmettatam S, Katsonis N. Nat Commun, 2019, 10: 4819 doi: 10.1038/s41467-019-12786-2

    116. [116]

      Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2016, (10): 1281−1283 doi: 10.11777/j.issn1000-3304.2016.16283

    1. [1]

      卿鑫吕久安俞燕蕾 . 光致形变液晶高分子. 高分子学报, 2017, (11): 1679-1705. doi: 10.11777/j.issn1000-3304.2017.17196

    2. [2]

      张希 . 液晶高分子材料的新功能:微管执行器及其光控微量液体运动. 高分子学报, 2016, (10): 1281-1283. doi: 10.11777/j.issn1000-3304.2016.16283

    3. [3]

      孟志英陈力钟海艺刘晓锋王玉忠 . 同时添加碳纳米管及石墨烯对热致液晶聚酯形状记忆行为及拉伸性能的影响. 高分子学报, 2016, (12): 1758-1762. doi: 10.11777/j.issn1000-3304.2016.16192

    4. [4]

      叶齐全郑明心陈曦李丹田卫国张军袁金颖 . 聚合原位合成含螺吡喃组装体及其光响应研究. 高分子学报, 2019, 50(4): 344-351. doi: 10.11777/j.issn1000-3304.2018.18256

    5. [5]

      宋肄业李静柏涛刘利薛小强黄文艳钱小磊杨宏军蒋必彪 . 主链含酯键的基于聚甲基丙烯酸二甲氨基乙酯的共聚物合成与表征. 高分子学报, 2016, (6): 769-774. doi: 10.11777/j.issn1000-3304.2016.15318

    6. [6]

      邱文秀程翰张先正卓仁禧 . 刺激响应型多肽的研究及其在肿瘤诊疗中的应用. 高分子学报, 2018, (1): 32-44. doi: 10.11777/j.issn1000-3304.2018.17256

    7. [7]

      张亚军张正奎陈伟芝李成武伟蒋锡群β-环糊精聚轮烷的合成及其细胞摄取行为的研究. 高分子学报, 2017, (2): 306-314. doi: 10.11777/j.issn1000-3304.2017.16268

    8. [8]

      胡丹宁孙亚飞陶磊袁金颖隋晓锋危岩 . 具有环境响应性的纤维素基水凝胶. 高分子学报, 2020, 51(8): 880-889. doi: 10.11777/j.issn1000-3304.2020.20131

    9. [9]

      张轶洁李甜甜马晓东印杰姜学松 . 基于聚醚胺(PEA)动态交联网络的多重响应性表面褶皱图案. 高分子学报, 2021, 52(1): 61-68. doi: 10.11777/j.issn1000-3304.2020.20133

    10. [10]

      关英张拥军 . 微凝胶胶体晶体研究进展. 高分子学报, 2017, (11): 1739-1752. doi: 10.11777/j.issn1000-3304.2017.17169

    11. [11]

      胡爱国 . 基于Bergman环化反应的高分子合成方法. 高分子学报, 2016, (12): 1635-1644. doi: 10.11777/j.issn1000-3304.2016.16225

    12. [12]

      黄平杨婷婷袁建军胡荣涛程时远 . 疏水高分子介导可动芯SiO2杂化纳米粒子的仿生合成. 高分子学报, 2012, (12): 1399-1408. doi: 10.3724/SP.J.1105.2012.12069

    13. [13]

      陈力黄恒圳王玉忠JOW JindeSU Kenny . 固态后缩聚方法合成高分子量的含磷热致性液晶共聚酯. 高分子学报, 2009, (5): 493-498. doi: 10.3724/SP.J.1105.2009.00493

    14. [14]

      庄会岩倪玉山丁孟贤 . 热致性液晶聚酯酰亚胺高分子的合成. 高分子学报, 1994, (6): 666-671.

    15. [15]

      益小苏沈烈 . 热致液晶高分子微纤的形貌特征和一个模量分析的方法. 高分子学报, 1994, (5): 621-626.

    16. [16]

      韩哲文陆志豹石晓阳吴平平 . 溶致性液晶高分子聚苯并噁唑的合成和结构与性能研究. 高分子学报, 1997, (2): 141-146.

    17. [17]

      倪玉山王云辉李光金晓明 . 一种新型聚酯醚砜热致液晶高分子的合成与表征. 高分子学报, 1995, (1): 14-17.

    18. [18]

      房丽萍杨柏 . 高分子仿生有序微结构及其反射和响应特性. 高分子学报, 2012, (10): 1055-1063. doi: 10.3724/SP.J.1105.2012.12144

    19. [19]

      陈寿羲陈欣金永泽宋文辉蔡丽英 . 片晶装饰技术研究高分子液晶向列相的向错. 高分子学报, 1995, (6): 732-737.

    20. [20]

      林一 . 高分子合成方面的新发展(Ⅱ). 高分子学报, 1960, 4(1): 1-11.

  • Figure 1.  Structure, response type and application of CLCP. (a) Structure: Blue dots indicate crosslinks, and purple rectangles indicate either main-chain or side-chain mesogenic moieties. (b) Flexible robot: Optical images of the micro-gripper operated in a grip-and-release mode (Reprinted with permission from Ref.[12]; Copyright (2018) Nature Publishing Group); (c) Microfluidic transport: Schematics showing the motion of a slug of fully wetting liquid confined in a tubular microactuator (TMA) driven by photodeformation (Reprinted with permission from Ref.[14]; Copyright (2016) Springer Nature); (d) Sensor: Photographs of the CLCP film coated with conductive materials and two LED lights of different colors. When a finger approaches the back of the CLCP film, the film bends along the direction perpendicular to the LC alignment direction, resulting in the closure of circuit 1 and illumination of the yellow LED. When irradiated with UV light toward the front side of the film, the film bends along the LC alignment direction and circuit 2 containing the red LED closes (Reprinted with permissions from Ref.[15]; Copyright (2016) WILEY-VCH); (e) Artificial muscle: Schematic of the anatomy of a relaxed and contracted bicep muscle fibers to achieve a lifting motion (Reprinted with permission from Ref.[16]; Copyright (2019) American Chemical Society); (f) Smart surface: 3D image of the initial flat surface state and surface topographies under UV exposure (Reprinted with permissions from Ref.[17]; Copyright (2014) WILEY-VCH).

    Figure 2.  (a) In the LC phase, the polymer backbones experience an aniso-tropic environment which leads to an extended chain conformation. At the phase transition to the isotropic phase, the polymer regains its coiled conformation, giving rise to a macroscopic shape change (Reprinted with the permission from Ref.[19]; Copyright (2010) Wiley-VCH); (b) Reversible curling for the film 0.2 mm-UV20+40 between nematic and isotropic states (Reprinted with the permission from Ref.[21]; Copyright (2018) Wiley-VCH); (c) Photoreorientation of azobenzene containing LCPs with linearly unpolarized light (Reprinted with the permission from Ref.[22]; Copyright (2017) Acta Polymerica Sinica); (d) Chemical structures of common liquid crystal monomers.

    Figure 3.  (a) Schematic illustration of the one-step method used to prepare highly oriented LC side-chain polymers. (b) Schematic illustration of the two-step method used to prepare LCE (Reprinted with the permission from Ref.[14]; Copyright (2019) Wiley-VCH).

    Figure 4.  Dynamic covalent exchangeable bonds: (a) Transesterification; (b) Boronic-ester exchange reaction; (c) Transcarbamoyalation; (d) Disulfide bond exchange reaction; (e) Allyl sulfide bond exchange reaction (Reprinted with permission from Ref.[27]; Copyright (2020) MDPI, AG); (f) Molecular zipper mechanism of PU network crosslinked by PS1 and PS2. Mechanical force induces ring sliding and synchronously breaks the partial hydrogen-bond stacking domains as sacrificial bonds to dissipate the mechanical energy. Non-interlocked crosslinkers R1, R2, A1 and A2 were used as reference compounds (Reprinted with permission from Ref.[51]; Copyright (2020) Wiley-VCH).

    Figure 5.  (a) Schematic of an inkjet printer placing homeo-tropic alignment material (Reprinted with permission from Ref.[55]; Copyright (2018) Wiley-VCH); (b) Schematic drawing of the microfluidic setup (Reprinted with permission from Ref.[57]; Copyright (2009) Wiley-VCH); (c) Experimental setup used Colloidal Lithography to prepare the responsive pillars (Reprinted with permission from Ref.[58]; Copyright (2006) American Chemical Society); (d) The graphical schematic of a direct laser writing apparatus (Reprinted with permission from Ref.[59]; Copyright (2017) The Royal Society of Chemistry).

    Figure 6.  (a) One-pot synthesis of the photopolymerizable LCE ink for high operating temperature (Reprinted with permission from Ref.[63]; Copyright (2018) Wiley-VCH); (b) Integration of 4D printed LCE with PDMS as a variable focal length lens (Reprinted with permission from Ref.[18]; Copyright (2018) Wiley-VCH); (c) Snake-like curling achieved by “gradient parameter-encoded 4D printing”, Shape morphing of an orthogonally arranged bilayer strip with the print speed of the bottom layer along the longitudinal axis uniformly changing from 3 mm·s−1 (blue) to 12 mm·s−1 (red) (the print speed of the top layer is 6 mm·s−1 (purple)). (Reprinted with permission from Ref.[60]; Copyright (2020) American Chemical Society); (d) Programmable shape morphing of LCE actuators from 2D to 3D (scale bars=5 mm) (Reprinted with permission from Ref.[63]; Copyright (2018) Wiley-VCH).

    Figure 7.  (a) Actuation optical images of the LCE films with “+1/2” and “−1/2” defect array at 25 and 200 °C (Reprinted with permission from Ref.[66]; Copyright (2016) Wiley-VCH); (b) Demonstration of the folding of the LCE primitive kirigami building block when heated to 180  °C. Gaussian curvatures are depicted with dashed circle: positive (red) and negative (blue) (Reprinted with permission from Ref.[67]; Copyright (2018) Wiley-VCH); (c) A box was programmed as the temporary shape and unfolded after heating. Subsequently, the LCE autonomously folded into a swan after cooling (Reprinted with permission from Ref.[45]; Copyright (2018) American Association for the Advancement of Science); (d) The two-stage reversible strains were achieved by smectic A-nematic and nematic-isotropic phase transitions upon thermal cycling (from left to right) (Reprinted with permission from Ref.[40]; Copyright (2018) American Chemical Society).

    Figure 8.  (a) UV-Vis spectra of LCN film (Reprinted with permission from Ref.[12]; Copyright (2018) Nature Publishing Group); (b) Photothermal​​​​​​​ actuation (Reprinted with permission from Ref.[12]; Copyright (2018) Nature Publishing Group); (c) Local actuation of LCE-CNT (Reprinted with permission from Ref.[71]; Copyright (2011) Wiley-VCH); (d) Schematic illustration of reversible photomechanical actuation in graphene/LCE nanocomposites upon an on-off switching of NIR light (Reprinted with permission from Ref.[69]; Copyright (2015) Wiley-VCH; (e) Schematic illustration of the two acting mechanisms for different bending behaviors triggered by UV-Vis and NIR light, respectively (Reprinted with permission from Ref.[39]; Copyright (2018) Wiley-VCH); (f) Photo image of a LCE film (4.3 mg) lifting up a load (ca. 24.44 g) under NIR illumination (Reprinted with permission from Ref.[76]; Copyright (2017) American Chemical Society); (g) Schematic mechanism of the NIR-light-driven oscillation behavior of the PDA-coated LCN film (Reprinted with permission from Ref.[75]; Copyright (2020) Wiley-VCH); (h) A tripod rotates/returns back when IR light turns on/off (Reprinted with permission from Ref.[72]; Copyright (2016) American Chemical Society); (i) NIR-induced actuation for hooking a basket. Only the black ink patterned part responds to such stimulus, showing a reversible curving motion (Reprinted with permission from Ref.[73]; Copyright (2020) Wiley-VCH).

    Figure 9.  (a) Schematic representation of the collective bending of the photoresponsive fibers leading to the transport of floating objects (Reprinted with permission from Ref.[80]; Copyright (2016) Wiley-VCH); (b) All optical control of a photoinduced deformation and relaxation for an of-azo LCE film blueprinted to form a 3D shape (Reprinted with permission from Ref.[20]; Copyright (2019) Wiley-VCH); (c) Series of snapshots extracted from the video depicting film oscillations; dotted lines have been added to aid the eye (Reprinted with permission from Ref.[79]; Copyright (2016) Nature Publishing Group); (d) Tricolor-changing LCE3B flower with its blossom blooming and unblooming modulated by light with different wavelengths (Reprinted with permission from Ref.[82]; Copyright (2018) American Chemical Society); (e) Photomotility of a polymeric strip (Reprinted with permission from Ref.[84]; Copyright (2016) Nature Publishing Group).

    Figure 10.  Movements of magnetic LCE particles with (a) magnetic forces and (b) transport cloth (Reprinted with permission from Ref.[87]; Copyright (2019) Wiley-VCH).

    Figure 11.  (a) Photographs showing the “tree” bending. When a finger is close to the back of “tree,” it bends in the direction perpendicular to the LC alignment direction and changes from a backbends to a forward bends, while it recovers to its original state after the finger is removed. The double-headed arrows represent the mesogens alignment direction; (b) Photographs of the CLCP film as a dual-mode sensor which was assembled by a CLCP film coated with conductive materials and two LED lights of different colors (Reprinted with permissions from Ref.[15]; Copyright (2017) WILEY-VCH); (c) Realization of artificial nocturnal flower. Schematic representation of the nocturnal actuator: the flower opens at high humidity level in absence of light and closes in the presence of light or when the humidity is low; (d) Curvature changes with variation in RH and light intensity. Change in curvature of treated LCN strip with increasing RH, under dark conditions. Effect of light intensity on curvature of LCN strip held at 80% RH (room temperature); (e) Representation of molecular alignment in four petals of monolithic LCN flowers and their corresponding initial shape under ambient conditions. In picture on the left, the director on the planar side is parallel to the long axis of the petal, while in picture on the right, the director has an offset of 10° with respect to the long axis (Reprinted with permissions from Ref.[88]; Copyright (2019) WILEY-VCH); (f) Schematic illustration of the artificial flower showing reversible humidity-responsive movement in an air chamber and a SO2 chamber; (g) Reversible opening/closing of the flower. And an inactive flower after being exposed to SO2 gas (Reprinted with permissions from Ref.[89]; Copyright (2019) WILEY-VCH).

    Figure 12.  (a) The photoimage of a caterpillar. Schematic illustration of the force analysis for a light-driven caterpillar-inspired walker (Reprinted with permission from Ref.[39]; Copyright (2018) Wiley-VCH); (b) Photographs showing the closing and blooming of an AuNR-ALCE “flower” upon exposure to UV light and vis light (Reprinted with permission from Ref.[39]; Copyright (2018) Wiley-VCH); (c) Series of optical images of the gripper operated in a grip-and-release mode, and f the same device reprogrammed to operate in a grip-and-hold mode (Reprinted with permission from Ref.[12]; Copyright (2018) Nature Publishing Group); (d) Schematic of the soft iris fabrication process. Scale bars are 5 mm. (Reprinted with permission from Ref.[111];Copyright (2017)Wiley-VCH); (e) Spine-inspired bistable soft actuators. Bioinspired by the active spine mechanism during cheetahs’ high-speed galloping, a bistable spine-based hybrid soft actuator is proposed to realize the similar spine flexion and extension through reversible snap-through bistability for design of high-speed locomotive soft robots (Reprinted with permission from Ref. [110]; Copyright (2020) Nature Publishing Group); (f) Flytrap-inspired light-powered soft robot (Reprinted with permission from Ref.[106]; Copyright (2017) Nature Publishing Group); (g) 4-Armed gripper and 8-legged structure (Reprinted with permission from Ref.[108];Copyright (2018) Wiley-VCH); (h) The real-time images of electro-driven rotation of the cylindrical actuator (Reprinted with permission from Ref.[112]; Copyright (2020) American Chemical Society).

    Figure 13.  (a) Design and composition of mechanically adaptive polymers. The zoom shows the molecular components of the network. The network and the free fraction of liquid crystal phase separate. The photo-induced isomerization of the azobenzene induces disorder and increases the polarity of the fibers, and therefore isomerization impacts the orientation (anchoring) of the free liquid crystal molecules, and their miscibility to the network (Reprinted with permission from Ref.[115]; Copyright (2019) Nature Publishing Group); (b) Muscle-like mechanical behavior from springs of light-stiffening materials.Response of a liquid crystal polymer spring to increasing pulling forces (Reprinted with permission from Ref.[115]; Copyright (2019) Nature Publishing Group); (c) Illustration of the deformation of a 1 cm×1 cm, four layer LCE laminate (26 mg) lifting over 56 g of load over 0.4 mm. Scale bar is 1 cm. (Reprinted with permission from Ref.[81]; Copyright (2018) Nature Publishing Group); (d) Photo images of IPN-LCE film (20.1 mg) lifting up a load (ca. 605.02 g) in a heating/cooling cycle. (Reprinted with permission from Ref.[77]; Copyright (2019) American Chemical Society).

    Figure 14.  (a) Photoinduced manipulation of a silicone oil slug in a tubular microactuator composed of linear LCP; (b) Light-driven manipulation of liquid in straight, serpentine, helical and “Y”-shaped TMAs (Reprinted with permission from Ref.[14]; Copyright (2016) Springer Nature); (c) Schematic showing the feeding and excreting processes of a female mosquito and a liquid column pumped and driven in a tube by a photoinduced pressure differential. A sponge doped with an azo compound (C11AzC4) in a gas chamber is illuminated, and the photothermal effect leads to an expansion of the gas. A liquid column is pumped in the tube as the gas is contracting while the light is turned off. The exposure and non-exposure of the photothermal device induce expansion and contraction of gas, and control the moving direction of the liquid column. (Reprinted with permission from Ref.[96]; Copyright (2019) Wiley-VCH).

  • 加载中
图(14)
计量
  • PDF下载量:  3
  • 文章访问数:  1396
  • HTML全文浏览量:  1184
  • 引证文献数: 0
文章相关
  • 通讯作者:  王向红, wangxh@zzu.edu.cn
    刘旭影, liuxy@zzu.edu.cn
  • 收稿日期:  2020-07-30
  • 修稿日期:  2020-08-24
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2021-02-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计