ISSN 1000-3304CN 11-1857/O6

表面抗菌功能涂层的构建及在生物医用材料中的应用研究

范玲玲 黎槟瑞 张浩伟 方艳

引用本文: 范玲玲, 黎槟瑞, 张浩伟, 方艳. 表面抗菌功能涂层的构建及在生物医用材料中的应用研究[J]. 高分子学报, 2021, 52(3): 253-271. doi: 10.11777/j.issn1000-3304.2020.20185 shu
Citation:  Ling-ling Fan, Bin-rui Li, Hao-wei Zhang and Yan Fang. Fabrication of Antibacterial Coatings and Their Applications in Biomedical Materials[J]. Acta Polymerica Sinica, 2021, 52(3): 253-271. doi: 10.11777/j.issn1000-3304.2020.20185 shu

表面抗菌功能涂层的构建及在生物医用材料中的应用研究

    作者简介: 方艳,女,1987年生. 南京工业大学生物与制药工程学院副教授,硕士生导师. 2014年博士毕业于浙江大学高分子科学与工程学系,随后在新加坡南洋理工大学生物医学工程系及新加坡国立大学化工系进行博士后研究. 2017年冬加入南京工业大学. 主要方向为材料表面功能涂层设计及其在抗菌抗黏附和促生物膜形成及生物转化方面的应用研究等;
    通讯作者: 方艳, E-mail: fangyan@njtech.edu.cn
摘要: 近年来,生物医用材料在使用过程中产生的医源性感染问题层出不穷,对人们健康和生命造成严重威胁. 表面抗菌涂层构建是解决该类医源性感染问题最有效的策略之一. 目前,按照作用机制和功能不同将表面抗菌涂层分为接触式抗菌涂层、抗黏附抑菌涂层、抗黏附杀菌涂层以及智能抗菌涂层. 表面抗菌涂层的构建不仅赋予了生物医用材料抗菌性能,有效解决了上述医源性感染问题,还可以提高材料的生物相容性,赋予其抗黏附、抗氧化、生物识别、传感等功能. 本文旨在对目前表面抗菌涂层的种类、构建方法以及其在生物医用材料领域中的应用做一全面论述,为进一步开发高性能表面抗菌涂层并扩展其应用提供新思路.

English

    1. [1]

      Del P J L. Expert Rev Anti Infect Ther, 2018, 16(1): 51−65 doi: 10.1080/14787210.2018.1417036

    2. [2]

      Vuotto C, Donelli G. Drugs, 2019, 79(15): 1635−1655 doi: 10.1007/s40265-019-01184-z

    3. [3]

      Yu Q, Wu Z Q, Chen H. Acta Biomater, 2015, 16: 1−13 doi: 10.1016/j.actbio.2015.01.018

    4. [4]

      Zeng Zhe(曾哲), Xu Lingcheng(徐领城), Li Leiqing(李雷清), Hu Yangmin(胡阳敏). Chinese Journal of Antibiotics(中国抗生素杂志), 2018, (4): 1−5

    5. [5]

      Nicolle L E. Antimicrob Resist Infect Control, 2014, 3(1): 6 doi: 10.1186/2047-2994-3-6

    6. [6]

      Song F, Koo H, Ren D. J Dent Res, 2015, 94(8): 1027−1034 doi: 10.1177/0022034515587690

    7. [7]

      Godoy G M, Wang Z, Shen Y, Manero J M, Gil F J, Rodriguez D, Haapasalo M. ACS Appl Mater Interfaces, 2015, 7(10): 5992−6001 doi: 10.1021/acsami.5b00402

    8. [8]

      Dhand C, Ong C Y, Dwivedi N, Varadarajan J, Halleluyah P M, Jianyang L E, Mayandi V, Goh E T, Leng N R P, Chan L W, Beuerman R W, Foo L L, Loh X J, Lakshminarayanan R. ACS Biomater Sci Eng, 2020, 6(5): 3162−3173 doi: 10.1021/acsbiomaterials.0c00229

    9. [9]

      Bazmizeynabad F, Salehi R, Alizadeh E, Kafil H S, Hassanzadeh A M, Mahkam M. RSC Adv, 2015, 5(128): 105678−105691 doi: 10.1039/C5RA22784D

    10. [10]

      Wei T, Yu Q, Chen H. Adv Health Mater, 2019, 8(3): 1801381 doi: 10.1002/adhm.201801381

    11. [11]

      Ferreira L, Zumbuehl A. J Mater Chem, 2009, 19(42): 7796−7806 doi: 10.1039/b905668h

    12. [12]

      Shang D, Sun X, Shen X, Hang J, Jin L, Shi L. Prog Org Coat, 2018, 121: 142−150 doi: 10.1016/j.porgcoat.2018.04.029

    13. [13]

      Zhou Z, Calabrese D R, Taylor W, Finlay J A, Callow M E, Callow J A, Fischer D, Kramer E J, Ober C K. Biofouling, 2014, 30(5): 589−604 doi: 10.1080/08927014.2014.897335

    14. [14]

      Hoque J, Ghosh S, Paramanandham K, Haldar J. ACS Appl Mater Interfaces, 2019, 11(42): 39150−39162 doi: 10.1021/acsami.9b11453

    15. [15]

      Chu X H, Zhang M, Zhou N L, Wu F, Sun B H, Shen J. RSC Adv, 2018, 8(58): 33000−33009 doi: 10.1039/C8RA05793A

    16. [16]

      Ramesh K, Gundampati R K, Singh S, Mitra K, Shukla A, Jagannadham M V, Chattopadhyay D, Misra N, Ray B. RSC Adv, 2016, 6(31): 25864−25876 doi: 10.1039/C5RA23239B

    17. [17]

      Jeong C J, Sharker S M, In I, Park S Y. ACS Appl Mater Interfaces, 2015, 7(18): 9469−9478 doi: 10.1021/acsami.5b02737

    18. [18]

      Dundar Arisoy F, Kolewe K W, Homyak B, Kurtz I S, Schiffman J D, Watkins J J. ACS Appl Mater Interfaces, 2018, 10(23): 20055−20063 doi: 10.1021/acsami.8b05066

    19. [19]

      Zhong C, Zhu Y W, Zhu N Y, Liu T Q, Gou S H, Zhang F Y, Yao J, Xie J Q, Ni J M. Int J Med Microbiol, 2020, 310(5): 151433 doi: 10.1016/j.ijmm.2020.151433

    20. [20]

      Wei T, Tang Z C, Yu Q, Chen H. ACS Appl Mater Interfaces, 2017, 9(43): 37511−37523 doi: 10.1021/acsami.7b13565

    21. [21]

      Hoyos N M, Buxadera P J, Ginebra M P, Manero J M, Gil F J, Mas M C. Colloid Surface B, 2018, 169: 30−40 doi: 10.1016/j.colsurfb.2018.04.050

    22. [22]

      Cloutier M, Mantovani D, Rosei F. Trends Biotechnol, 2015, 33(11): 637−652 doi: 10.1016/j.tibtech.2015.09.002

    23. [23]

      Hu B J, Chen X Q, Zuo Y, Liu Z L, Xing X D. J Appl Polym Sci, 2014, 131(7): 7

    24. [24]

      Liu T F, Liu Y Q, Liu M L, Wang Y, He W F, Shi G Q, Hu X H, Zhan R X, Luo G X, Xing M, Wu J. Burns Trauma, 2018, 6: 23

    25. [25]

      Xie D, Weng Y, Guo X, Zhao J, Gregory R L, Zheng C G. Dent Mater, 2011, 27(5): 487−496 doi: 10.1016/j.dental.2011.02.006

    26. [26]

      Ye X L, Qin X M, Yan X R, Guo J K, Huang L H, Chen D J, Wu T, Shi Q S, Tan S Z, Cai X. Chem Eng J, 2016, 304: 873−881 doi: 10.1016/j.cej.2016.07.026

    27. [27]

      Wang C H, Liu W S, Sun J F, Hou G G, Chen Q, Cong W, Zhao F. Int J Biol Macromol, 2016, 84: 418−427 doi: 10.1016/j.ijbiomac.2015.12.047

    28. [28]

      Asri L, Crismaru M, Roest S, Chen Y, Ivashenko O, Rudolf P, Tiller J C, van der Mei H C, Loontjens T J A, Busscher H J. Adv Funct Mater, 2014, 24(3): 346−355 doi: 10.1002/adfm.201301686

    29. [29]

      Hoogerheide J C. J Bacteriol, 1945, 49(3): 277−289 doi: 10.1128/JB.49.3.277-289.1945

    30. [30]

      Guo M, Meng F K, Li G P, Luo J Y, Ma Y W, Xia X. ACS Omega, 2019, 4(15): 16591−16596 doi: 10.1021/acsomega.9b02403

    31. [31]

      Kang C K, Kim S S, Kim S, Lee J, Lee J H, Roh C, Lee J. Carbohydr Polym, 2016, 151: 1012−1018 doi: 10.1016/j.carbpol.2016.06.043

    32. [32]

      Zhao Z Q, Ma X L, Chen R, Xue H, Lei J H, Du H, Zhang Z X, Chen H. ACS Appl Mater Interfaces, 2020, 12(17): 19268−19276 doi: 10.1021/acsami.0c00791

    33. [33]

      Wan X Y, Zhang Y, Deng Y, Zhang Q, Li J, Wang K J, Li J S, Tan H, Fu Q. Soft Matter, 2015, 11(21): 4197−4207 doi: 10.1039/C5SM00380F

    34. [34]

      Lv X, Liu C, Song S X, Qiao Y J, Hu Y J, Li P F, Li Z K, Sun S L. RSC Adv, 2018, 8(6): 2941−2949 doi: 10.1039/C7RA11001D

    35. [35]

      Li Z S, Cheng J, Yang X X, Liu H, Xu X, Ma L, Shang S B, Song Z Q. Inter J Biol Macromol, 2020, 150: 1−8 doi: 10.1016/j.ijbiomac.2020.01.259

    36. [36]

      Savini F, Loffredo M R, Troiano C, Bobone S, Malanovic N, Eichmann T O, Caprio L, Canale V C, Park Y, Mangoni M L, Stella L. BBA-Biomembranes, 2020, 1862(8): 183291 doi: 10.1016/j.bbamem.2020.183291

    37. [37]

      Etienne O, Picart C, Taddei C, Haikel Y, Dimarcq J L, Schaaf P, Voegel J C, Ogier J A, Egles C. Antimicrob Agents Ch, 2004, 48(10): 3662−3669 doi: 10.1128/AAC.48.10.3662-3669.2004

    38. [38]

      Alves D, Pereira M O. Biofouling, 2014, 30(4): 483−499 doi: 10.1080/08927014.2014.889120

    39. [39]

      Costa F, Carvalho I F, Montelaro R C, Gomes P, Martins M C L. Acta Biomater, 2011, 7(4): 1431−1440 doi: 10.1016/j.actbio.2010.11.005

    40. [40]

      Melo M N, Ferre R, Castanho M A R B. Nat Rev Microbiol, 2009, 7(3): 245−250 doi: 10.1038/nrmicro2095

    41. [41]

      Eby D M, Farrington K E, Johnson G R. Biomacromolecules, 2008, 9(9): 2487−2494 doi: 10.1021/bm800512e

    42. [42]

      Yazici H, O’Neill M B, Kacar T, Wilson B R, Oren E E, Sarikaya M, Tamerler C. ACS Appl Mater Interfaces, 2016, 8(8): 5070−5081 doi: 10.1021/acsami.5b03697

    43. [43]

      Kazemzadeh N M, Lai B F L, Ding C F, Kizhakkedathu J N, Hancock R E W, Wang R Z. Biomaterials, 2013, 34(24): 5969−5977 doi: 10.1016/j.biomaterials.2013.04.036

    44. [44]

      Lim K Y, Chua R R Y, Bow H, Tambyah P A, Hadinoto K, Leong S S J. Acta Biomater, 2015, 15: 127−138 doi: 10.1016/j.actbio.2014.12.015

    45. [45]

      Acosta S, Ibanez F A, Aparicio C, Rodriguez C J C. Biomater Sci, 2020, 8(10): 2866−2877

    46. [46]

      Rigo S, Cai C, Gunkel-Grabole G, Maurizi L, Zhang X, Xu J, Palivan C A O. Adv Sci(Weinh), 2018, 5(5): 1700892

    47. [47]

      Wang L L, Hu C, Shao L Q. Int J Nanomed, 2017, 12: 1227−1249 doi: 10.2147/IJN.S121956

    48. [48]

      Arciola C R, Campoccia D, Speziale P, Montanaro L, Costerton J W. Biomaterials, 2012, 33(26): 5967−5982 doi: 10.1016/j.biomaterials.2012.05.031

    49. [49]

      Dibrov P, Dzioba J, Gosink K K, Hase C C. Antimicrob Agents Chemother, 2002, 46(8): 2668−2670 doi: 10.1128/AAC.46.8.2668-2670.2002

    50. [50]

      Jo Y K, Seo J H, Choi B H, Kim B J, Shin H H, Hwang B H, Cha H J. ACS Appl Mater Interfaces, 2014, 6(22): 20242−20253 doi: 10.1021/am505784k

    51. [51]

      Jung J, Raghavendra G M, Kim D, Seo J. Int J Biol Macromol, 2018, 107: 2285−2290 doi: 10.1016/j.ijbiomac.2017.10.108

    52. [52]

      Jia Z J, Xiu P, Li M, Xu X C, Shi Y Y, Cheng Y, Wei S C, Zheng Y F, Xi T F, Cai H, Liu Z J. Biomaterials, 2016, 75: 203−222 doi: 10.1016/j.biomaterials.2015.10.035

    53. [53]

      Wu M C, Ma B H, Pan T Z, Chen S S, Sun J Q. Adv Funct Mater, 2016, 26(4): 569−576 doi: 10.1002/adfm.201504197

    54. [54]

      Hu Y J, Ji X B, Wei D S, Deng J. J Nanosci Nanotechnol, 2020, 20(10): 6542−6546 doi: 10.1166/jnn.2020.18520

    55. [55]

      Yassin M A, Elkhooly T A, Elsherbiny S M, Reicha F M, Shokeir A A. Heliyon, 2019, 5(12): e02986 doi: 10.1016/j.heliyon.2019.e02986

    56. [56]

      Pantaroto H N, Ricomini F A P, Bertolini M M, Dias da Silva J H, Azevedo Neto N F, Sukotjo C, Rangel E C, Barão V A R. Dent Mater, 2018, 34(7): e182−e195 doi: 10.1016/j.dental.2018.03.011

    57. [57]

      Perelshtein I, Applerot G, Perkas N, Wehrschuetz S E, Hasmann A, Guebitz G, Gedanken A. Surf Coat Technol, 2009, 204(1-2): 54−57 doi: 10.1016/j.surfcoat.2009.06.028

    58. [58]

      Tavakoli S, Nemati S, Kharaziha M, Akbari A S. Colloid Interface Sci, 2019, 28: 20−28 doi: 10.1016/j.colcom.2018.11.002

    59. [59]

      Raghupathi K R, Koodali R T, Manna A C. Langmuir, 2011, 27(7): 4020−4028 doi: 10.1021/la104825u

    60. [60]

      Sirelkhatim A, Mahmud S, Seeni A, Kaus N H M, Ann L C, Bakhori S K M, Hasan H, Mohamad D. Nano Micro Lett, 2015, 7(3): 219−242 doi: 10.1007/s40820-015-0040-x

    61. [61]

      Kumar P T S, Lakshmanan V K, Anilkumar T V, Ramya C, Reshmi P, Unnikrishnan A G, Nair S V, Jayakumar R. ACS Appl Mater Interfaces, 2012, 4(5): 2618−2629 doi: 10.1021/am300292v

    62. [62]

      Oun A A, Shankar S, Rhim J W. Crit Rev Food Sci Nutr, 2020, 60(3): 435−460 doi: 10.1080/10408398.2018.1536966

    63. [63]

      Liu J L, Wang Y H, Ma J Z, Peng Y, Wang A Q. J Alloy Compd, 2019, 783: 898−918 doi: 10.1016/j.jallcom.2018.12.330

    64. [64]

      Wang H P, Gong X C, Miao Y L, Guo X, Liu C, Fan Y Y, Zhang J, Niu B L, Li W F. Food Chem, 2019, 283: 397−403 doi: 10.1016/j.foodchem.2019.01.022

    65. [65]

      Dinca V, Mocanu A, Isopencu G, Busuioc C, Brajnicov S, Vlad A, Icriverzi M, Roseanu A, Dinescu M, Stroescu M, Stoica G A, Suchea M. Arab J Chem, 2020, 13(1): 3521−3533 doi: 10.1016/j.arabjc.2018.12.003

    66. [66]

      Alves M J, Grenho L, Lopes C, Borges J, Vaz F, Vaz I P, Fernandes M H. Mater Sci Eng C Mater Biol Appl, 2018, 92: 840−848 doi: 10.1016/j.msec.2018.07.045

    67. [67]

      Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A. Small, 2013, 9(23): 4069−4076

    68. [68]

      Eshed M, Lellouche J, Gedanken A, Banin E. Adv Funct Mater, 2014, 24(10): 1382−1390 doi: 10.1002/adfm.201302425

    69. [69]

      Deokar A R, Shalom Y, Perelshtein I, Perkas N, Gedanken A, Banin E. J Nanopart Res, 2016, 18(8): 218

    70. [70]

      Nahum Y, Israeli R, Mircus G, Perelshtein I, Ehrenberg M, Gutfreund S, Gedanken A, Bahar I. Graefes Arch Clin Exp Ophthalmol, 2019, 257(1): 95−100 doi: 10.1007/s00417-018-4172-9

    71. [71]

      Huang W C, Tsai P J, Chen Y C. Nanomedicine, 2007, 2(6): 777−787 doi: 10.2217/17435889.2.6.777

    72. [72]

      Han W, Wu Z N, Li Y, Wang Y Y. Chem Eng J, 2019, 358: 1022−1037 doi: 10.1016/j.cej.2018.10.106

    73. [73]

      Perdikaki A, Galeou A, Pilatos G, Prombona A, Karanikolos G N. Langmuir, 2018, 34(37): 11156−11166 doi: 10.1021/acs.langmuir.8b01880

    74. [74]

      Song J, Kong H and Jang J. Colloid Surface B, 2011, 82(2): 651−656 doi: 10.1016/j.colsurfb.2010.10.027

    75. [75]

      Elena P, Miri K. Colloid Surface B, 2018, 169: 195−205 doi: 10.1016/j.colsurfb.2018.04.065

    76. [76]

      Simoes D, Miguel S P, Ribeiro M P, Coutinho P, Mendonca A G, Correia I J. Eur J Pharm Biopharm, 2018, 127: 130−141 doi: 10.1016/j.ejpb.2018.02.022

    77. [77]

      Qiao Z Z, Yao Y, Song S M, Yin M H, Luo J B. J Mater Chem B, 2019, 7(5): 830−840 doi: 10.1039/C8TB02917B

    78. [78]

      Pejman M, Firouzjaei M D, Aktij S A, Das P, Zolghadr E, Jafarian H, Shamsabadi A A, Elliott M, Esfahani M R, Sangermano M, Sadrzadeh M, Wujcik E K, Rahimpour A, Tiraferri A. J Membr Sci, 2020, 611: 118352 doi: 10.1016/j.memsci.2020.118352

    79. [79]

      Li D Y, Gong Y F, Chen X Y, Zhan, Bo T, Zhang H J, Jin P P, Li H. Surf Coat Technol, 2017, 330: 87−91 doi: 10.1016/j.surfcoat.2017.09.085

    80. [80]

      Xu Q W, Li X, Jin Y Y, Sun L, Ding X X, Liang L, Wang L, Nan K H, Ji J, Chen H, Wang B L. Nanoscale, 2017, 9(48): 19245−19254 doi: 10.1039/C7NR07106J

    81. [81]

      Li Z, Lee D, Sheng X, Cohen R E, Rubner M F. Langmuir, 2006, 22(24): 9820−9823 doi: 10.1021/la0622166

    82. [82]

      Wang Y, Zhang D. Surf Coat Technol, 2012, 210: 71−77 doi: 10.1016/j.surfcoat.2012.08.066

    83. [83]

      Rai A, Pinto S, Evangelista M B, Gil H, Kallip S, Ferreira M G S, Ferreira L. Acta Biomater, 2016, 33: 64−77 doi: 10.1016/j.actbio.2016.01.035

    84. [84]

      Li Z H, Guo Z G. Nanoscale, 2019, 11(47): 22636−22663 doi: 10.1039/C9NR05870B

    85. [85]

      Sun D, Li P Y, Li X, Wang X F. New J Chem, 2020, 44(5): 2059−2069 doi: 10.1039/C9NJ04266K

    86. [86]

      Banerjee S L, Samanta S, Sarkar S, Singha N K. J Mater Chem B, 2020, 8(2): 226−243 doi: 10.1039/C9TB00949C

    87. [87]

      Li Y, Xu Y, Fleischer C C, Huang J, Lin R, Yang L, Mao H. J Mater Chem B, 2018, 6(1): 9−24 doi: 10.1039/C7TB01695F

    88. [88]

      Fang Y, Gonuguntla S, Soh S. ACS Appl Mater Interfaces, 2017, 9(37): 32220−32226 doi: 10.1021/acsami.7b07711

    89. [89]

      Psarra E, König U, Ueda Y, Bellmann C, Janke A, Bittrich E, Eichhorn K J, Uhlmann P. ACS Appl Mater Interfaces, 2015, 7(23): 12516−12529 doi: 10.1021/am508161q

    90. [90]

      Pan S F, Ke X X, Wang T Y, Liu Q, Zhong L B, Zheng Y M. Ind Eng Chem Res, 2019, 58(2): 984−993 doi: 10.1021/acs.iecr.8b04893

    91. [91]

      Zheng J, Wang L, Zeng X Z, Zheng X Y, Zhang Y, Liu S, Shi X T, Wang Y J, Huang X H, Ren L. ACS Appl Mater Interfaces, 2016, 8(29): 18684−18692 doi: 10.1021/acsami.6b04348

    92. [92]

      Banerjee I, Pangule R C, Kane R S. Adv Mater, 2011, 23(6): 690−718 doi: 10.1002/adma.201001215

    93. [93]

      Yadav V, Jaimes L Y A, Dewangan N K, Park N, Li T H, Robertson M L, Conrad J C. ACS Appl Mater Interfaces, 2017, 9(51): 44900−44910 doi: 10.1021/acsami.7b14416

    94. [94]

      Morgese G, Gombert Y, Ramakrishna S N, Benetti E M. ACS Appl Mater Interfaces, 2018, 10(48): 41839−41848 doi: 10.1021/acsami.8b17193

    95. [95]

      Jo S, Park K. Biomaterials, 2000, 21(6): 605−616 doi: 10.1016/S0142-9612(99)00224-0

    96. [96]

      Wang P, Tan K L, Kang E T, Neoh K G. J Adhes Sci Technol, 2002, 16(2): 111−127 doi: 10.1163/156856102317293650

    97. [97]

      Ding X, Yang C, Lim T P, Hsu L Y, Engler A C, Hedrick J L, Yang Y Y. Biomaterials, 2012, 33(28): 6593−6603 doi: 10.1016/j.biomaterials.2012.06.001

    98. [98]

      Sundaram H S, Han X, Nowinski A K, Ella M J R, Wimbish C, Marek P, Senecal K, Jiang S Y. ACS Appl Mater Interfaces, 2014, 6(9): 6664−6671 doi: 10.1021/am500362k

    99. [99]

      Kurowska M, Eickenscheidt A, Al-Ahmad A, Lienkamp K. ACS Appl Bio Mater, 2018, 1(3): 613−626 doi: 10.1021/acsabm.8b00100

    100. [100]

      Cao B, Tang Q, Cheng G. J Biomater Sci Polym Ed, 2014, 25(14-15): 1502−1513 doi: 10.1080/09205063.2014.927300

    101. [101]

      Jiang S Y, Cao Z Q. Adv Mater, 2020, 22(9): 920−932

    102. [102]

      Peng W, Liu P M, Zhang X, Peng J M, Gu Y H, Dong X H, Ma Z Z, Liu P S, Shen J. Chem Eng J, 2020, 398: 125663 doi: 10.1016/j.cej.2020.125663

    103. [103]

      Pu Y, Hou Z, Khin M M, Zamudio V R, Poon K L, Duan H, Chan P M B. Biomacromolecules, 2017, 18(1): 44−55 doi: 10.1021/acs.biomac.6b01279

    104. [104]

      Yang R, Xu J J, Ozaydin I G, Wong S Y, Gleason K K. Chem Mater, 2011, 23(5): 1263−1272 doi: 10.1021/cm1031392

    105. [105]

      Valotteau C, Calers C, Casale S, Berton J, Stevens C V, Babonneau F, Pradier C M, Humblot V, Baccile N. ACS Appl Mater Interfaces, 2015, 7(32): 18086−18095 doi: 10.1021/acsami.5b05090

    106. [106]

      Li M, Mitra D, Kang E T, Lau T, Chiong E, Neoh K G. ACS Appl Mater Interfaces, 2017, 9(2): 1847−1857 doi: 10.1021/acsami.6b10240

    107. [107]

      Fang Yan(方艳), Gao Hao(高豪), Jiang Min(姜岷), Ma Jiangfeng(马江锋), Xu Fanli(徐帆莉), Xin Fengxue(信丰学), Dong Weiliang(董维亮). China(中国), Patent Application for Invention, CN109847603A. 2019-01-24

    108. [108]

      Wang Y Z, Gu L, Xu F L, Xin F X, Ma J F, Jiang M, Fang Y. Langmuir, 2019, 35(13): 4445−4452 doi: 10.1021/acs.langmuir.8b03704

    109. [109]

      Fang Y, He T, Gao H, Fan L L, Liu J Y, Li B R, Zhang H W, Bai H Y. Catalysts, 2020, 10: 415 doi: 10.3390/catal10040415

    110. [110]

      Zhang Z, Chen S F, Jiang S Y. Biomacromolecules, 2006, 7(12): 3311−3315 doi: 10.1021/bm060750m

    111. [111]

      Zhang J, Shen B, Chen L, Chen L D, Mo J Y, Feng J. ACS Appl Mater Interfaces, 2019, 11(35): 31594−31604 doi: 10.1021/acsami.9b08870

    112. [112]

      Zhao C, Li X S, Li L Y, Cheng G, Gong X, Zheng J. Langmuir, 2013, 29(5): 1517−1524 doi: 10.1021/la304511s

    113. [113]

      Gallardo A, Martínez-Campos E, García C, Cortajarena A L, Rodríguez H J. Biomacromolecules, 2017, 18(5): 1521−1531 doi: 10.1021/acs.biomac.7b00073

    114. [114]

      Carr L R, Xue H, Jiang S Y. Biomaterials, 2011, 32(4): 961−968 doi: 10.1016/j.biomaterials.2010.09.067

    115. [115]

      He H C, Xuan X, Zhang C Y, Song Y, Chen S F, Gong X, Ren B P, Zheng J, Wu J. Langmuir, 2019, 35(5): 1828−1836 doi: 10.1021/acs.langmuir.8b01755

    116. [116]

      Jiang D Y, Liu Z X, Han J, Wu X D. Rsc Adv, 2016, 6(65): 60530−60536 doi: 10.1039/C6RA07335B

    117. [117]

      Wu J H, Zhang D, He X M, Wang Y, Xiao S W, Chen F, Fan P, Zhong M Q, Tan J, Yang J T. Ind Eng Chem Res, 2019, 58(38): 17792−17801 doi: 10.1021/acs.iecr.9b02984

    118. [118]

      Darmanin T, Guittard F. J Mater Chem A, 2014, 2(39): 16319−16359 doi: 10.1039/C4TA02071E

    119. [119]

      Zhao Y Y, Yu C M, Lan H, Cao M Y, Jiang L. Adv Funct Mater, 2017, 27(27): 1701466 doi: 10.1002/adfm.201701466

    120. [120]

      Han K, Park T Y, Yong K, Cha H J. ACS Appl Mater Interfaces, 2019, 11(10): 9777−9785 doi: 10.1021/acsami.8b21122

    121. [121]

      Wang Z H, Zuilhof H. Langmuir, 2016, 32(25): 6310−6318 doi: 10.1021/acs.langmuir.6b01318

    122. [122]

      Li W T, Zhang H X, Li X L, Yu H, Che C Y, Luan S F, Ren Y, Li S, Liu P, Yu X T, Li X. ACS Appl Mater Interfaces, 2020, 12(6): 7617−7630 doi: 10.1021/acsami.9b22206

    123. [123]

      Sun X W, Wu C Q, Hu J H, Huang X Y, Lu G L, Feng C. Langmuir, 2019, 35(5): 1235−1241 doi: 10.1021/acs.langmuir.8b03632

    124. [124]

      Zhang H, Lin C G, Wang L, Yuan S L. Acta Chimica Simica, 2013, 71: 649−656 doi: 10.6023/A13010068

    125. [125]

      Valeria C, Edwards G C J C, Hamley I W, Glyn B, Jani S, Janne R. ACS Appl Mater Interfaces, 2019, 11(10): 9893−9903 doi: 10.1021/acsami.9b00581

    126. [126]

      Yin B, Liu C H. J Nanosci Nanotechno, 2019, 19(6): 3647−3653 doi: 10.1166/jnn.2019.16133

    127. [127]

      Fu Y H, Yang Y, Xiao S W, Zhang L X, Huang L, Chen F, Fan P, Zhong M Q, Tan J, Yang J T. Prog Org Coat, 2019, 130: 75−82 doi: 10.1016/j.porgcoat.2019.01.038

    128. [128]

      Voo Z X, Khan M, Narayanan K, Seah D, Hedrick J L, Yang Y Y. Macromolecules, 2015, 48(4): 1055−1064 doi: 10.1021/ma5022488

    129. [129]

      Lin J, Chen X Y, Chen C Y, Hu J T, Zhou C L, Cai X F, Wang W, Zheng C, Zhang P P, Cheng J, Guo Z H, Liu H. ACS Appl Mater Interfaces, 2018, 10(7): 6124−6136 doi: 10.1021/acsami.7b16235

    130. [130]

      Jean B P, Damien S, Thierry J, Pascal T. Int J Biol Macromol, 2019, 139: 468−474 doi: 10.1016/j.ijbiomac.2019.07.188

    131. [131]

      Paris J B, Seyer D, Jouenne T, Thébault P. Colloid Surface B, 2017, 156: 186−193 doi: 10.1016/j.colsurfb.2017.05.025

    132. [132]

      He S, Zhou P, Wang L X, Xiong X L, Zhang Y F, Deng Y, Wei S C. J R Soc Interface, 2014, 11(95): 13

    133. [133]

      Zhao X, Li P, Guo B L, Ma P X. Acta Biomater, 2015, 26: 236−248 doi: 10.1016/j.actbio.2015.08.006

    134. [134]

      Murthy P S K, Mohan Y M, Varaprasad K, Sreedhar B, Raju K M. J Colloid Interface Sci, 2008, 318(2): 217−224

    135. [135]

      Xie Y, Chen S Q, Zhang X, Shi Z Q, Wei Z W, Bao J X, Zhao W F, Zhao C S. Ind Eng Chem Res, 2019, 58(27): 11689−11697 doi: 10.1021/acs.iecr.9b00224

    136. [136]

      Zhao R T, Lv M, Li Y, Sun M X, Kong W, Wang L H, Song S P, Fan C H, Jia L L, Qiu S F, Sun Y S, Song H B, Hao R Z. ACS Appl Mater Interfaces, 2017, 9(18): 15328−15341 doi: 10.1021/acsami.7b03987

    137. [137]

      Zhao X X, Liu H R, Hu Y B, Huang J Y, Zhang S H, Ja F. React Funct Polym, 2016, 107: 54−59 doi: 10.1016/j.reactfunctpolym.2016.07.014

    138. [138]

      Casuso P, Odriozola I, Pérez S Vicente A, Loinaz I, Cabañero G, Grande H J, Dupin D. Biomacromolecules, 2015, 16(11): 3552−3561 doi: 10.1021/acs.biomac.5b00980

    139. [139]

      Gordon O, Slenters T V, Brunetto P S, Villaruz A E, Sturdevant D E, Otto M, Landmann R, Fromm K M. Antimicrob Agents Ch, 2010, 54(10): 4208−4218 doi: 10.1128/AAC.01830-09

    140. [140]

      Chen H, Cheng R Y, Zhao X, Zhang Y H, Tam A, Yan Y F, Shen H K, Zhang Y S, Qi J, Feng Y, Liu L, Pan G Q, Cui W G, Deng L F. NPG Asia Mater, 2019, 11: 12 doi: 10.1038/s41427-019-0112-3

    141. [141]

      Qian Y Z, Zhou X F, Zhang F M, Diekwisch T G H, Luan X, Yang J X. ACS Appl Mater Interfaces, 2019, 11(41): 37381−37396 doi: 10.1021/acsami.9b07053

    142. [142]

      Nystrom L, Stromstedt A A, Schmidtchen A, Malmsten M. Biomacromolecules, 2018, 19(8): 3456−3466 doi: 10.1021/acs.biomac.8b00776

    143. [143]

      Wang L S, Gupta A, Duncan B, Ramanathan R, Yazdani M, Rotello V M. ACS Biomater Sci Eng, 2016, 2(11): 1862−1866 doi: 10.1021/acsbiomaterials.6b00464

    144. [144]

      Wu C Z, Schwibbert K, Achazi K, Landsberger P, Gorbushina A, Haag R. Biomacromolecules, 2017, 18(1): 210−216 doi: 10.1021/acs.biomac.6b01527

    145. [145]

      Zahra S, Nabilah S F, Kit H K K, Naresh K, Marta K, Anton B, Wong E H H, Boyer C. ACS Appl Mater Interfaces, 2019, 11(7): 7320−7329

    146. [146]

      Duong H T, Jung K, Kutty S K, Agustina S, Adnan N N M, Basuki J S, Kumar N, Davis T P, Brraud N, Boyer C. Biomacromolecules, 2014, 15(7): 2583−2589 doi: 10.1021/bm500422v

    147. [147]

      Yu K, Lo J C Y, Mei Y, Haney E F, Siren E, Kalathottukaren M T, Hancock R E W, Lange D, Kizhakkedathu J N. ACS Appl Mater Interfaces, 2015, 7(51): 28591−28605 doi: 10.1021/acsami.5b10074

    148. [148]

      Hao X P, Chen S G, Qin D, Zhang M T, Li W, Fan J C, Wang C, Dong M Y, Zhang J X, Cheng F, Guo Z H. Mat Sci Eng C-Mater, 2020, 108: 110361 doi: 10.1016/j.msec.2019.110361

    149. [149]

      Wei T, Zhan W J, Cao L M, Hu C M, Qu Y C, Yu Q, Chen H. ACS Appl Mater Interfaces, 2016, 8(44): 30048−30057 doi: 10.1021/acsami.6b11187

    150. [150]

      Yu Q, Cho J, Shivapooja P, Ista L K, López G P. ACS Appl Mater Interfaces, 2013, 5(19): 9295−9304 doi: 10.1021/am4022279

    151. [151]

      Lee B S, Lin Y C, Hsu W C, Hou C H, Shyue J J, Hsiao S Y, Wu P J, Lee Y T, Luo S C. ACS Appl Bio Mater, 2020, 3(1): 486−494 doi: 10.1021/acsabm.9b00939

    152. [152]

      Kim S H, Kang E B, Jeong C J, Sharker S M, In I, Park S Y. ACS Appl Mater Interfaces, 2015, 7(28): 15600−15606 doi: 10.1021/acsami.5b04321

    153. [153]

      Qiao Z Z, Yao Y, Su Y L, Song S M, Yin M H, Luo J B. ACS Appl Bio Mater, 2019, 2(10): 4583−4593 doi: 10.1021/acsabm.9b00678

    154. [154]

      Zhan W J, Qu Y C, Wei T, Hu C M, Pan Y, Yu Q, Chen H. ACS Appl Mater Interfaces, 2018, 10(13): 10647−10655 doi: 10.1021/acsami.7b18166

    155. [155]

      Wei T, Zhan W J, Yu Q, Chen H. ACS Appl Mater Interfaces, 2017, 9(31): 25767−25774 doi: 10.1021/acsami.7b06483

    156. [156]

      Xie X Z, Mao C Y, Liu X M, Zhang Y Z, Cui Z D, Yang X J, Yeung K W K, Pan H B, Chu P K, Wu S L. ACS Appl Mater Interfaces, 2017, 9(31): 26417−26428 doi: 10.1021/acsami.7b06702

    157. [157]

      Yu H, Liu L, Yang H W, Zhou R T, Che C Y, Li X, Li C S, Luan S F, Yin J H, Shi H C. ACS Appl Mater Interfaces, 2018, 10(45): 39257−39267 doi: 10.1021/acsami.8b13868

    158. [158]

      Pérez K B, Fernández G M, Pascual G, García M F, San R J, Bellón J M. Hernia, 2016, 20(6): 869−878 doi: 10.1007/s10029-016-1537-z

    159. [159]

      Salwiczek M, Qu Y, Gardiner J, Strugnell R A, Lithgow T, McLean K M, Thissen H. Trends Biotechnol, 2014, 32(2): 82−90 doi: 10.1016/j.tibtech.2013.09.008

    160. [160]

      Mutters N T, Günther F, Heininger A, Frank U. Future Microbiol, 2014, 9(4): 487−495 doi: 10.2217/fmb.14.12

    161. [161]

      Ganewatta M S, Miller K P, Singleton S P, Mehrpouya-Bahrami P, Chen Y P, Yan Y, Nagarkatti M, Nagarkatti P, Decho A W, Tang C B. Biomacromolecules, 2015, 16(10): 3336−3344 doi: 10.1021/acs.biomac.5b01005

    162. [162]

      Bowen W H, Koo H. Caries Res, 2011, 45(1): 69−86 doi: 10.1159/000324598

    163. [163]

      Archer N K, Mazaitis M J, Costerton J W, Leid J G, Powers M E, Shirtliff M E. Virulence, 2011, 2(5): 445−459 doi: 10.4161/viru.2.5.17724

    164. [164]

      Khan S, Zaidi S, Alouffi A S, Hassan I, Imran A, Khan R A. ACS Omega, 2020, 5(13): 7254−7261 doi: 10.1021/acsomega.9b04042

    165. [165]

      Finkel J S, Mitchell A P. Nat Rev Microbiol, 2011, .9(2): 109−118 doi: 10.1038/nrmicro2475

    166. [166]

      Hoque J, Konai M M, Gonuguntla S, Manjunath G B, Samaddar S, Yarlagadda V, Haldar J. J Med Chem, 2015, 58(14): 5486−5500 doi: 10.1021/acs.jmedchem.5b00443

    167. [167]

      Xu X Y, Chen Y F, Tan Q G, Chen Z J, Li Y, Wu W G, Wang X F, Liu Y B. J Mater Chem B, 2019, 7(32): 4963−4972 doi: 10.1039/C9TB01036J

    168. [168]

      Krikava I, Kolar M, Garajova B, Balik T, Sevcikova A, Roschke I, Sevcik P. Biomed Pap, 2020, 164(2): 154−160 doi: 10.5507/bp.2019.022

    169. [169]

      Gao Q, Li X, Yu W J, Jia F, Yao T T, Jin Q, Ji J. ACS Appl Mater Interfaces, 2020, 12(2): 2999−3010 doi: 10.1021/acsami.9b19335

    170. [170]

      Shurygina I A, Prozorova G F, Trukhan I S, Korzhova S A, Fadeeva T V, Pozdnyakov A S, Dremina N N, Emel'yanov A I, Kuznetsova N P, Shurygin M G. Nanomaterials(Basel, Switzerland), 2020, 10(8): 1477

    171. [171]

      Vaterrodt A, Thallinger B, Daumann K, Koch D, Guebitz G M, Ulbricht M. Langmuir, 2016, 32(5): 1347−1359 doi: 10.1021/acs.langmuir.5b04303

    172. [172]

      Ullah I, Siddiqui M A, Liu H, Kolawole S K, Zhang J, Zhang S, Ren L, Yang K. ACS Biomater Sci Eng, 2020, 6(3): 1355−1366 doi: 10.1021/acsbiomaterials.9b01396

    173. [173]

      Xia C, Cai D S, Tan J, Li K Q, Qiao Y Q, Liu X Y. ACS Biomater Sci Eng, 2018, 4(9): 3185−3193 doi: 10.1021/acsbiomaterials.8b00501

    174. [174]

      Chouirfa H, Bouloussa H, Migonney V, Falentin D C. Acta Biomater, 2019, 83: 37−54 doi: 10.1016/j.actbio.2018.10.036

    175. [175]

      Agarwal S, Riffault M, Hoey D, Duffy B, Curtin J, Jaiswal S. ACS Biomater Sci Eng, 2017, 3(12): 3244−3253 doi: 10.1021/acsbiomaterials.7b00527

    176. [176]

      Eliaz N, Metoki N. Materials, 2017, 10(4): 104

    177. [177]

      Geuli O, Lewinstein I, Mandler D. ACS Applied Nano Materials, 2019, 2(5): 2946−2957 doi: 10.1021/acsanm.9b00369

    178. [178]

      Kazemzadeh N M, Kindrachuk J, Duan K, Jenssen H, Hancock R E W, Wang R Z. Biomaterials, 2010, 31(36): 9519−9526 doi: 10.1016/j.biomaterials.2010.08.035

    179. [179]

      Xiao A, Dhand C, Leung C M, Beuerman R W, Ramakrishna S, Lakshminarayanan R. J Mater Chem B, 2018, 6(15): 2171−2186 doi: 10.1039/C7TB03136J

    180. [180]

      Tuby R, Gutfreund S, Perelshtein I, Mircus G, Ehrenberg M, Mimouni M, Gedanken A, Bahar I. Chem Nano Mat, 2016, 2(6): 547−551

    181. [181]

      Dutta D, Kamphuis B, Ozcelik B, Thissen H, Pinarbasi R, Kumar N, Willcox M D P. Optom Vis Sci, 2018, 95(10): 937−946 doi: 10.1097/OPX.0000000000001282

    182. [182]

      Topete A, Pinto C A, Barroso H, Saraiva J A, Barahona I, Saramago B, Serro A P. ACS Biomater Sci Eng, 2020, 6(7): 4051−4061 doi: 10.1021/acsbiomaterials.0c00412

    183. [183]

      Li X, Zhao Y, Wang K, Wang L A O, Yang X, Zhu S. PLoS One, 2017, 12(12): e0189778 doi: 10.1371/journal.pone.0189778

    184. [184]

      Parra F, Vázquez B, Benito L, Barcenilla J, San Román J. Biomacromolecules, 2009, 10(11): 3055−3061 doi: 10.1021/bm9006997

    185. [185]

      Wang S, Huang Q, Liu X, Li Z, Yang H, Lu Z. ACS Biomater Sci Eng, 2019, 5(4): 2030−2040 doi: 10.1021/acsbiomaterials.9b00118

    186. [186]

      Xie S X, Song L, Yuca E, Boone K, Sarikaya R, VanOosten S K, Misra A, Ye Q, Spencer P, Tamerler C. ACS Appl Polym Mater, 2020, 2(3): 1134−1144 doi: 10.1021/acsapm.9b00921

    187. [187]

      Francolini I, Vuotto C, Piozzi A, Donelli G. APMIS, 2017, 125(4): 392−417 doi: 10.1111/apm.12675

    188. [188]

      Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda P. Proc Inst Mech Eng Part H-J Eng Med, 2014, 228(10): 1083−1099 doi: 10.1177/0954411914556137

    189. [189]

      Xue H, Zhao Z Q, Chen S Q, Du H, Chen R, Brash J L, Chen H. Colloid Interface Sci Commun, 2020, 37: 7

    190. [190]

      Manna J, Begum G, Kumar K P, Misra S, Rana R K. ACS Appl Mater Interfaces, 2013, 5(10): 4457−4463 doi: 10.1021/am400933n

    191. [191]

      Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. ACS Appl Mater Interfaces, 2015, 7(40): 22394−22403 doi: 10.1021/acsami.5b06239

    192. [192]

      Bains D, Singh G, Kaur N, Singh N. ACS Sustain Chem Eng, 2019, 7(1): 969−978 doi: 10.1021/acssuschemeng.8b04608

    193. [193]

      Li P, Poon Y F, Li W F, Zhu H Y, Yeap S H, Cao Y, Qi X B, Zhou C C, Lamrani M, Beuerman R W, Kang E T, Mu Y G, Li C M, Chang M W, Leong S S J, Chan P M B. Nat Mater, 2011, 10(2): 149−156 doi: 10.1038/nmat2915

    194. [194]

      Zhou L, Lei D, Wang Q, Luo X, Chen Y. ACS Appl Bio Mater, 2020, 3(8): 5357−5366 doi: 10.1021/acsabm.0c00666

    195. [195]

      Gan D L, Xu T, Xing W S, Ge X, Fang L M, Wang K F, Ren F Z, Lu X. Adv Funct Mater, 2019, 29(1): 11

    196. [196]

      Li S Q, Dong S J, Xu W G, Tu S C, Yan L S, Zhao C W, Ding J X, Chen X S. Adv Sci, 2018, 5(5): 17

    197. [197]

      Chen S, Tang F, Tang L Z, Li L D. ACS Appl Mater Interfaces, 2017, 9(24): 20895−20903 doi: 10.1021/acsami.7b04956

    198. [198]

      Agnihotri S, Mukherji S, Mukherji S. Appl Nanosci, 2012, 2(3): 179−188 doi: 10.1007/s13204-012-0080-1

    199. [199]

      Kumar P T S, Lakshmanan V K, Biswas R, Nair S V, Jayakumar R. J Biomed Nanotechnol, 2012, 8(6): 891−900 doi: 10.1166/jbn.2012.1461

    200. [200]

      Fan Z J, Liu B, Wang J Q, Zhang S Y, Lin Q Q, Gong P W, Ma L M, Yang S R. Adv Funct Mater, 2014, 24(25): 3933−3943 doi: 10.1002/adfm.201304202

    201. [201]

      Sun X Q, Ma C, Gong W L, Ma Y N, Ding Y H, Liu L. Int J Biol Macromol, 2020, 157: 522−529 doi: 10.1016/j.ijbiomac.2020.04.210

    202. [202]

      Wang C G, Wang M, Xu T Z, Zhang X X, Lin C, Gao W Y, Xu H Z, Lei B, Mao C. Theranostics, 2019, 9(1): 65−76 doi: 10.7150/thno.29766

    203. [203]

      Wang S Q, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H P, Wang L L, Zhang Q Y. Nano Lett, 2020, 20(7): 5149−5158 doi: 10.1021/acs.nanolett.0c01371

    204. [204]

      Alves M M, Bouchami O, Tavares A, Córdoba L, Santos C F, Miragaia M, de Fátima Montemor M. ACS Appl Mater Interfaces, 2017, 9(34): 28157−28167 doi: 10.1021/acsami.7b02320

    205. [205]

      Pranjali P, Meher M K, Raj R, Prasad N, Poluri K M, Kumar D, Guleria A. ACS Omega, 2019, 4(21): 19255−19264 doi: 10.1021/acsomega.9b02615

    206. [206]

      Liu Z Y, Qi L B, An X C, Liu C F, Hu Y X. ACS Appl Mater Interfaces, 2017, 9(46): 40987−40997 doi: 10.1021/acsami.7b12314

    207. [207]

      Bai S, Li X H, Zhao Y H, Ren L X, Yuan X Y. ACS Appl Mater Interfaces, 2020, 12(10): 12305−12316 doi: 10.1021/acsami.9b21871

    208. [208]

      Lee H S, Yee M Q, Eckmann Y Y, Hickok N J, Eckmann D M, Composto R J. J Mater Chem, 2012, 22(37): 19605−19616

    209. [209]

      Liu M, Duan X P, Li Y M, Yang D P, Long Y Z. Mat Sci Eng C, 2017, 76: 1413−1423 doi: 10.1016/j.msec.2017.03.034

    210. [210]

      Syukri D M, Nwabor O F, Singh S, Ontong J C, Wunnoo S, Paosen S, Munah S, Voravuthikunchai S P. J Microbiol Meth, 2020, 174: 105955 doi: 10.1016/j.mimet.2020.105955

    1. [1]

      孙立伟宋凌杰栾世方殷敬华 . 生物医用材料表面光引发活性接枝聚合研究新进展. 高分子学报, 2021, 52(3): 223-234. doi: 10.11777/j.issn1000-3304.2020.20198

    2. [2]

      李丹吴静娴刘小莉栾亚菲陈红 . 血液接触材料表面抗血栓改性新策略:构建纤溶活性表面. 高分子学报, 2016, (7): 850-859. doi: 10.11777/j.issn1000-3304.2016.16150

    3. [3]

      雷文茜任科峰陈夏超胡米计剑 . 动态多孔海绵结构多层膜负载溶菌酶用于抗菌涂层的研究. 高分子学报, 2017, (5): 744-751. doi: 10.11777/j.issn1000-3304.2017.16260

    4. [4]

      杨珊宫铭宫永宽 . Langmuir-Blodgett方法构建聚合物仿细胞外层膜结构涂层. 高分子学报, 2014, (8): 1110-1115. doi: 10.11777/j.issn1000-3304.2014.13457

    5. [5]

      刘晟夏梦阁张燕江晓泽孟周琪武永涛成艳华朱美芳 . 具有物理/化学双重交联结构可调的mZnO/PAAm纳米抗菌复合水凝胶的合成及性能. 高分子学报, 2013, (10): 1270-1276. doi: 10.3724/SP.J.1105.2013.13018

    6. [6]

      孟令蝶王凤奇李金培田野吴敏吴大勇空閑重則黄勇 . 多乙烯多胺改性纤维素及其对水中砷、氟、铬吸附性能研究. 高分子学报, 2014, (8): 1070-1077. doi: 10.11777/j.issn1000-3304.2014.13458

    7. [7]

      赵晗尚晴杨萌金帅王洋洋赵宁尹晓品丁彩玲徐坚 . 邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维. 高分子学报, 2020, 51(3): 287-294. doi: 10.11777/j.issn1000-3304.2019.19172

    8. [8]

      宋晓峰凌风光陈学思 . 纳米羟基磷灰石表面接枝聚合左旋丙交酯. 高分子学报, 2013, (1): 95-101. doi: 10.3724/SP.J.1105.2013.12149

    9. [9]

      戚栋明黄朋陈智杰吴明华曹志海 . 纳米SiO2表面基团在MMA原位本体聚合中的阻缓聚作用. 高分子学报, 2015, (2): 213-220. doi: 10.11777/j.issn1000-3304.2015.14212

    10. [10]

      崔书铨俞麟丁建东 . 基于适度两亲性嵌段共聚物的可注射性热致水凝胶. 高分子学报, 2018, 0(8): 997-1015. doi: 10.11777/j.issn1000-3304.2018.18084

    11. [11]

      汪滨张凡王娇娜李秀艳李从举 . 偕胺肟化PAN纳米纤维膜除铬性能的研究. 高分子学报, 2016, (8): 1105-1111. doi: 10.11777/j.issn1000-3304.2016.15365

    12. [12]

      金灿江玉亮韩巧荣沈健王炳祥 . 聚砜共价键合磷铵两性离子的结构修饰及其血液相容性的研究. 高分子学报, 2015, (3): 306-311. doi: 10.11777/j.issn1000-3304.2015.14229

    13. [13]

      刘晶晶薛志欣燕苗张全意夏延致 . 后处理方式对琼胶纤维性能的影响. 高分子学报, 2018, 0(10): 1345-1350. doi: 10.11777/j.issn1000-3304.2018.18029

    14. [14]

      李翔王境鸿唐增超陈蕊方菁嶷李丹陈红 . 基于光束缚型引发剂的聚合物材料表面抗污聚合物刷改性. 高分子学报, 2020, 51(11): 1248-1256. doi: 10.11777/j.issn1000-3304.2020.20079

    15. [15]

      张燕霞于谦武照强周峰李鑫陈红 . 能够促进细胞黏附的生物活性表面的制备. 高分子学报, 2011, (6): 622-627. doi: 10.3724/SP.J.1105.2011.10147

    16. [16]

      张洪文陆枫潇姜彦俞强 . 聚酯薄膜表面接枝含硅氧烷共聚物及微生物黏附性研究. 高分子学报, 2015, (6): 667-672. doi: 10.11777/j.issn1000-3304.2015.14389

    17. [17]

      王蓉沈新坤胡燕蔡开勇 . 医用材料表界面设计及其与细胞相互作用. 高分子学报, 2019, 50(9): 863-872. doi: 10.11777/j.issn1000-3304.2019.19085

    18. [18]

      程伟高保娇施雪军门吉英 . 表面引发接枝聚合法制备抗蚜威分子表面印迹材料及其分子识别与结合特性研究. 高分子学报, 2013, (7): 934-942. doi: 10.3724/SP.J.1105.2013.12342

    19. [19]

      陈安伏黄汉雄关伟盛 . 超疏水高分子材料表面的微结构设计及其可调的黏附性. 高分子学报, 2015, (3): 245-251. doi: 10.11777/j.issn1000-3304.2015.14235

    20. [20]

      于庆杰马学虎郝婷婷袁达忠 . 含氟高分子/SiO2杂化疏水材料的制备及涂层表面性质. 高分子学报, 2008, (9): 874-879. doi: 10.3724/SP.J.1105.2008.00874

  • Figure 1.  Fabrication of antibacterial coatings based on mussel adhesive protein -based silver nanoparticles (Reprinted with permision from Ref.[50]; Copyright (2014) ACS Publications)

    Figure 2.  Surface modification on reverse osmosis (RO) membrane with zwitterionic films (Reprinted with permision from Ref.[104]; Copyright (2011) ACS Publications)

    Figure 3.  Preparation of antifouling and antibacterial coatings based on tannic acid-inspired green approach (Reprinted with permision from Ref.[135]; Copyright (2019) ACS Publications)

    Figure 4.  Fabrication of smart antibacterial coatings based on the PNIPAAM-QAS (Reprinted with permision from Ref.[150]; Copyright (2013) ACS Publications)

    Table 1.  Comparison of four kinds of antibacterial coatings.

    Classification Component MechanismConstructionCharacteristicsPotential applications Refs.
    Adhesion coatings with bacterial killing functionQuaternary ammonium salt, antimicrobial peptide, nano-metallic materials, antibiotics etc.Adhesion and direct killing bacteria by destroying the integrity of cell membrane and disturbing the normal reproduction of
    bacteria
    Covalent bonding by chemical reaction,
    surface deposition
    Antibacterial
    with high efficiency, some component may be toxic
    Key component materials for Bio-sensor, wound dressings, catheters, medical devices and other in vitro medical auxiliary materials[7,30,50,
    71,80]
    Anti-adhesion coatings with bacterial inhibition functionHydrophilic polymers, such as PEG, zwitterionic polymer,polysaccharides etc. hydrogels or super hydrophobic polymersBacterial inhibition by enhancing physical and energy barriers to prevent the bacteria adhering onto the materials surfaceSurface initiated graft polymerization, crosslinkingAntibacterial
    with low efficiency; It is only worked for bacteria with low-number; most component are non-toxic
    Key component materials for Bio-sensor, artificial crystal, cornea and other internal and external medical materials[8,15,80,
    89,9294,
    104107,
    121,123]
    Anti- adhesion coatings
    with
    bacterial killing function
    Hydrophilic polymers brushes (e.g. PEG, zwitterionic polymer, PVP, polysaccharides etc.) and hydrogels combined with the antibacterial
    component (e.g. quaternary ammonium salt, antimicrobial peptide, nano-metallic materials, antibiotics etc.)
    Anti-adhesion, both bacterial killing and inhibitionSurface initiated graft polymerization, crosslinking, embeddingAntibacterial
    with high efficiency; some component may be toxic
    Medical catheter, joint prosthesis and other
    implants
    [130,131,
    133,135,
    141,145,
    157]
    Intelligent antibacterial coatingstemperature, pH, light responsive molecules and the antibacterial component (e.g. quaternary ammonium salt, antimicrobial peptide, nano-metallic materials, antibiotics etc.)Environment responsive molecules
    as “switch” to release the antibacterial component for killing bacterial and remove the bacteria bodies
    Surface initiated graft polymerization, embeddingAntibacterial
    with high efficiency; most component are non-toxic
    An implant such
    as a stent, an intraocular lens,
    or a cornea
    [150,152154,156,
    158]
    下载: 导出CSV
  • 加载中
图(4)表(1)
计量
  • PDF下载量:  11
  • 文章访问数:  1269
  • HTML全文浏览量:  608
  • 引证文献数: 0
文章相关
  • 通讯作者:  方艳, fangyan@njtech.edu.cn
  • 收稿日期:  2020-08-06
  • 修稿日期:  2020-11-06
  • 刊出日期:  2021-03-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计