ISSN 1000-3304CN 11-1857/O6

共轭聚合物水凝胶的制备与应用进展

余明清 廖耀祖 朱美芳

引用本文: 余明清, 廖耀祖, 朱美芳. 共轭聚合物水凝胶的制备与应用进展[J]. 高分子学报, 2021, 52(2): 113-123. doi: 10.11777/j.issn1000-3304.2020.20186 shu
Citation:  Ming-qing Yu, Yao-zu Liao and Mei-fang Zhu. Progress in Preparation and Applications of Conjugated Polymer Hydrogels[J]. Acta Polymerica Sinica, 2021, 52(2): 113-123. doi: 10.11777/j.issn1000-3304.2020.20186 shu

共轭聚合物水凝胶的制备与应用进展

    作者简介: 廖耀祖,男,1982年生. 东华大学纤维材料改性国家重点实验室、材料科学与工程学院教授/博士生导师,先后在美国加州大学洛杉矶分校、英国布里斯托大学、德国柏林工业大学学习工作6年时间. 入选上海市曙光学者、上海市浦江学者、德国洪堡学者以及欧洲玛丽居里学者奖励计划等. 主要从事共轭聚合物及其框架材料的精准制备与传感检测、吸附分离、清洁能源开发等基础应用研究;
    通讯作者: 廖耀祖, E-mail: yzliao@dhu.edu.cn
  • 基金项目: 国家自然科学基金 (基金号 51873036,51673039) 资助项目

摘要: 共轭聚合物水凝胶是利用共轭聚合物制备的水凝胶材料,兼备水凝胶的力学性质、溶胀性质和共轭聚合物优异的电化学特性. 共轭聚合物水凝胶的制备方法多样,主要有原位聚合、直接填充、物理交联和化学交联等. 同时,在面对环境和能源领域的应用挑战时,共轭聚合物水凝胶具备良好的发展潜能,可广泛应用于药物释放、能量转换、能量储存、传感器、组织损伤修复和污水处理等诸多领域. 本文系统归纳了共轭聚合物水凝胶的制备方法和应用,对其研究目前存在的主要问题以及未来发展方向进行了分析.

English

    1. [1]

      Li W, Gao F, Wang X, Zhang N, Ma M. Angew Chem Int Ed, 2016, 55(32): 9196−9201 doi: 10.1002/anie.201603417

    2. [2]

      Ran F, Tan Y, Dong W, Liu Z, Kong L, Kang L. Polym Adv Technol, 2018, 29: 1697−1705 doi: 10.1002/pat.4273

    3. [3]

      Xie Zhen(谢震), Li Yusen(李玉森), Chen Long(陈龙), Jiang Donglin(江东林). Acta Polymerica Sinica(高分子学报), 2016, (12): 1621−1634 doi: 10.11777/j.issn1000-3304.2016.16222

    4. [4]

      Luo J, Chen Y, Zheng Y, Wang C, Wei W, Liu X. Electrochimica Acta, 2018, 272: 221−232 doi: 10.1016/j.electacta.2018.04.011

    5. [5]

      Chen X, Li X, Ding F, Xu W, Zhang J G. Nano Lett, 2012, 12(8): 4124−4130 doi: 10.1021/nl301657y

    6. [6]

      Shi Y, Zhou X Y, Zhang J, Bruck A M, Bond A C, Marschilok A C, Takeuchi K J, Takeuchi E S, Yu G H. Nano Lett, 2017, 17(3): 1906−1914 doi: 10.1021/acs.nanolett.6b05227

    7. [7]

      Gilmore K J, Hodgson A J, Luan B, Small C J, Wallace G G. Polym Gels Netw, 1994, 2(2): 135−143 doi: 10.1016/0966-7822(94)90032-9

    8. [8]

      Zhao Y, Liu B, Pan L, Yu G. Energy Environ Sci, 2013, 6(10): 2856−2870 doi: 10.1039/c3ee40997j

    9. [9]

      Small C J, Too C O, Wallace G G. Polym Gels Netw, 1997, 5(3): 251−265 doi: 10.1016/S0966-7822(96)00044-5

    10. [10]

      Kim B C, Spinks G M, Wallace G G, John R. Polymer, 2000, 41(5): 1783−1790 doi: 10.1016/S0032-3861(99)00308-0

    11. [11]

      Li L, Shi Y, Pan L, Shi Y, Yu G H, J. Mater Chem B, 2015, 3(15): 2920−2930 doi: 10.1039/C5TB00090D

    12. [12]

      Zhai D, Liu B, Shi Y, Pan L, Wang Y Q, Li W B, Zhang R, Yu G H. ACS Nano, 2013, 7(4): 3540−3546 doi: 10.1021/nn400482d

    13. [13]

      Wu H, Yu G, Pan L, Liu N, Mcdowell M T, Bao Z, Cui Y. Nat Commun, 2013, 4: 1943 doi: 10.1038/ncomms2941

    14. [14]

      Zhang L, Shi G. J Phys Chem C, 2011, 115(34): 17206−17212 doi: 10.1021/jp204036a

    15. [15]

      Khiem V N, Mai T, Urayama K, Gong J P, Itskov M. Macromolecules, 2019, 52(15): 5937−5947 doi: 10.1021/acs.macromol.9b01044

    16. [16]

      Zhang Donglian(张冬莲), He Juxin(何矩新), Zhou Xuehong(周学宏), Zheng Nan(郑楠), Liu Linlin(刘琳琳),Xie Zengqi(解增旗), Ma Yuguang(马於光). Acta Polymerica Sinica(高分子学报), 2019, 50(12): 1280−1289 doi: 10.11777/j.issn1000-3304.2019.19103

    17. [17]

      Ding H, Zhong M, Kim Y J, Pholpabu P, Balasubramanian A, Hui C M, He H. ACS Nano, 2014, 8(5): 4348−4357 doi: 10.1021/nn406019m

    18. [18]

      Du G, Gao G, Hou R, Cheng Y, Chen T, Fu J, Fei B. Chem Mater, 2014, 26(11): 3522−3529 doi: 10.1021/cm501095s

    19. [19]

      Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y. Small, 2019, 15(15): 1805162 doi: 10.1002/smll.201805162

    20. [20]

      Dispenza C, Presti C L, Belfiore C, Spadaro G, Piazza S. Polymer, 2006, 47(4): 961−971 doi: 10.1016/j.polymer.2005.12.071

    21. [21]

      Pu H, Qiao L, Liu Q, Yang Z. Eur Polym J, 2005, 41(10): 2505−2510 doi: 10.1016/j.eurpolymj.2005.04.033

    22. [22]

      Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D. Carbohydr Polym, 2008, 74(2): 215−219 doi: 10.1016/j.carbpol.2008.02.008

    23. [23]

      Jana T, Chatterjee J, Nandi A K. Langmuir, 2002, 18(15): 5720−5727 doi: 10.1021/la025724y

    24. [24]

      Luo Liang(罗亮), Zuo Ju(左榘), Chen Xingguo(陈兴国), Meng Fanling (孟凡玲), Huang Jianfeng(黄剑锋), He Binglin(何炳林). Acta Polymerica Sinica(高分子学报), 2003, (6): 862−865 doi: 10.3321/j.issn:1000-3304.2003.06.018

    25. [25]

      Rong Q F, Lei W W, Chen L, Yin Y, Zhou J, Liu M. Angew Chem Int Ed, 2017, 56(45): 14159−14163 doi: 10.1002/anie.201708614

    26. [26]

      Ihsan A B, Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932−937 doi: 10.1038/nmat3713

    27. [27]

      Chen Y, Peng L, Liu T, Wang Y, Shi S, Wang H. ACS Appl Mater Interfaces, 2016, 8(40): 27199−27206 doi: 10.1021/acsami.6b08374

    28. [28]

      Wu Q, Wei J, Xu B, Liu X, Wang H, Wang W, Wang Q. Sci Rep, 2017, 7(1): 41566 doi: 10.1038/srep41566

    29. [29]

      Du G, Cong Y, Chen L, Chen J, Fu J. Chinese J Polym Sci, 2017, 35(10): 1286−1296 doi: 10.1007/s10118-017-1979-5

    30. [30]

      Sun Y N, Gao G R, Du G L, Cheng Y J, Fu J. ACS Macro Lett, 2014, 3(5): 496−500 doi: 10.1021/mz500221j

    31. [31]

      Eelkema R, Pich A. Adv Mater, 2020, 1906012

    32. [32]

      Chen Z, To J W F, Wang C, Lu Z, Liu N, Chortos A, Pan L, Wei F, Cui Y, Bao Z. Adv Energy Mater, 2014, 4: 1400207 doi: 10.1002/aenm.201400207

    33. [33]

      Pan L J, Yu G H, Zhai D Y, Lee H R, Zhao W, Liu N, Wang H L, Benjamin C K, Yi T, Cui S Y, Bao Z N. Proc Natl Acad Sci USA, 2012, 109(24): 9287−9292 doi: 10.1073/pnas.1202636109

    34. [34]

      Shi Y, Wang M, Ma C B, Wang Y Q, Li X P, Yu G H. Nano Lett, 2015, 15(9): 6276−6281 doi: 10.1021/acs.nanolett.5b03069

    35. [35]

      Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Meltzer V. Radiat Phys Chem, 2016, 131: 51−59 doi: 10.1016/j.radphyschem.2016.09.029

    36. [36]

      Jeong J, Park J, Kim Y, Yang S, Jeong S, Lee J, Lim Y. Polymers, 2020, 12(1): 111 doi: 10.3390/polym12010111

    37. [37]

      Zhao F, Shi Y, Pan L, Yu G. Acc Chem Res, 2017, 50(7): 1734−1743 doi: 10.1021/acs.accounts.7b00191

    38. [38]

      Dimatteo R, Darling N J, Segura T. Adv Drug Deliv Rev, 2018, 127: 167−184 doi: 10.1016/j.addr.2018.03.007

    39. [39]

      Anna, Boczkowska, Stefan F, Awietjan. J Mater Sci Technol, 2009, 44(15): 4104−4111

    40. [40]

      Zhang L, Wang X, Pang Q, Huang Y, Tang L, Chen M, Liu Z. Int J Pharm, 2017, 532(1): 365−373 doi: 10.1016/j.ijpharm.2017.09.008

    41. [41]

      Pertici V, Trimaille T, Gigmes D. Macromolecules, 2020, 53(2): 682−692 doi: 10.1021/acs.macromol.9b00705

    42. [42]

      Lubtow M M, Mrlik M, Hahn L, Altmann A, Beudert M, Luhmann T, Luxenhofer R. J Funct Biomater, 2019, 10(3): 36 doi: 10.3390/jfb10030036

    43. [43]

      Liu W, Ye Z, Liu D, Wu Z. Bioresources, 2018, 13(4): 7281−7293

    44. [44]

      Qu J, Zhao X, Ma P, Guo B. Acta Biomater, 2018, 72: 55−69 doi: 10.1016/j.actbio.2018.03.018

    45. [45]

      Zhou M, Qian Y, Zhu Y, Matson J B. Chem Commum, 2020, 56(7): 1085−1088 doi: 10.1039/C9CC08752D

    46. [46]

      Ganguly S, Ray D, Das P, Maity P P, Mondal S, Aswal V K, Dhara S. Ultrason Sonochem, 2018, 42: 212−227 doi: 10.1016/j.ultsonch.2017.11.028

    47. [47]

      Kai D, Low Z W, Liow S S, Karim A, Ye H Y, Jin G R, Li K, Loh X J. ACS Sustain Chem Eng, 2015, 3(9): 2160−2169 doi: 10.1021/acssuschemeng.5b00405

    48. [48]

      Musilova L, Mracek A, Kovalcik A, Smolka P, Minarik A, Humpolicek P, Vicha R. Carbohydr Polym, 2018, 181: 394−403 doi: 10.1016/j.carbpol.2017.10.048

    49. [49]

      Sun Y, Ma Y, Fang G, Ren S, Fu Y. Bioresources, 2016, 11(1): 2361−2371

    50. [50]

      Kuerík J, Prová A, Rotaru A, Flimel K, Conte P. Thermochim Acta, 2011, 523(s1-2): 245−249

    51. [51]

      Tang Z Y, Liu Q, Tang Q W, Wu J H, Wang J L, Chen S H, Cheng C X, Yu H J, Lan Z, Lin J M, Huang M L. Electrochim Acta, 2011, 58: 52−57 doi: 10.1016/j.electacta.2011.08.074

    52. [52]

      Goodenough J B. Energy Environ Sci, 2014, 7(1): 14−18 doi: 10.1039/C3EE42613K

    53. [53]

      Hao G P, Hippauf F, Oschatz M, Wisser F M, Leifert A, Nickel W, Mohamed-Noriega N, Zheng Z K, Kaskel S. ACS Nano, 2014, 8(7): 7138−7146 doi: 10.1021/nn502065u

    54. [54]

      Yang Z K, Shi D J, Dong W F, Chen M Q. Chem Eur J, 2020, 26: 1846−1855 doi: 10.1002/chem.201904357

    55. [55]

      Wang Y Q, Shi Y, Pan L J, Ding Y, Zhao Y, Li Y, Shi Y, Yu G H. Nano Lett, 2015, 15: 7736 doi: 10.1021/acs.nanolett.5b03891

    56. [56]

      Shi Y, Zhang J, Bruck A M, Zhang Y, Li J, Stach E A, Takeuchi K J, Marschilok A C, Takeuchi E S, Yu G H. Adv Mater, 2017, 29(22): 1603922 doi: 10.1002/adma.201603922

    57. [57]

      Xu L, Li J, Zeng H, Zhang X, Cosnier S, Marks R S, Shan D. Biosens Bioelectron, 2019, 143: 111601 doi: 10.1016/j.bios.2019.111601

    58. [58]

      Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G. Nano Lett, 2015, 15(2): 1146−1151 doi: 10.1021/nl504217p

    59. [59]

      Pan L J, Chortos A, Yu G H, Wang Y Q, Isaacson S, Allen R, Shi Y, Dauskardt, Bao Z N. Nat Commun, 2014, 5(1): 3002 doi: 10.1038/ncomms4002

    60. [60]

      Liao M H, Wan P B, Wen J R, Gong M, Wu X X, Wang Y G, Shi R, Zhang L Q. Adv Funct Mater, 2017, 27(48): 1703852 doi: 10.1002/adfm.201703852

    61. [61]

      Shih C, Lin Y, Gao M, Wu M, Hsieh H, Wu N, Chen W. J Power Sources, 2019, 426: 205−215 doi: 10.1016/j.jpowsour.2019.04.030

    62. [62]

      Wang Tianyu(王天宇), Shen Zhaocun(沈兆存), Liu Minghua(刘鸣华). Acta Polymerica Sinica(高分子学报), 2017, (1): 50−62 doi: 10.11777/j.issn1000-3304.2017.16319

    63. [63]

      Teng W, Long T J, Zhang Q, Yao K, Shen T T, Ratner B D. Biomaterials, 2014, 35(32): 8916−8926 doi: 10.1016/j.biomaterials.2014.07.013

    64. [64]

      Wu T L, Cui C Y, Huang Y T, Liu Y, Fan C C, Han X X, Yang Y, Xu Z Y, Liu B, Fan G W, Liu W G. ACS Appl Mater Interfaces, 2020, 12(2): 2039−2048 doi: 10.1021/acsami.9b17907

    65. [65]

      Gačanin J, Kovtun A, Fischer S, Schwager V, Quambusch J, Kuan S L, Liu W, Boldt F, Li C, Yang Z Q, Liu D S, Wu Y Z, Weil T, Barth H, Ignatius A. Adv Healthc Mater, 2017, 6(21): 1700392 doi: 10.1002/adhm.201700392

    66. [66]

      Mawad D, Stewart E, Officer D L, Romeo T, Wagner P, Wagner K, Wallace G G. Adv Funct Mater, 2012, 22: 2692−2699 doi: 10.1002/adfm.201102373

    67. [67]

      Gu Z, Huang K, Luo Y, Zhang L, Kuang T, Chen Z, Liao G. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(6): e1520 doi: 10.1002/wnan.1520

    68. [68]

      Liu K, Han L, Tang P, Yang K, Gan D, Wang X, Wang K. Nano Lett, 2019, 19(12): 8343−8356 doi: 10.1021/acs.nanolett.9b00363

    69. [69]

      Hu X S, Liang R, Sun G X. J Mater Chem A, 2018, 6: 17612 doi: 10.1039/C8TA04722G

    70. [70]

      Li J, Su Z L, Ma X D, Xu H J, Shi Z X, Yin J, Jiang X S. Mater Chem Front, 2017, 1: 310−318 doi: 10.1039/C6QM00002A

    71. [71]

      Lv Q Y, Hu X S, Shen Y, Sun G X. J Appl Polym Sci, 2020, 137(36): e49004

    1. [1]

      胡健何金林张明祖倪沛红 . 点击化学在拓扑结构聚合物合成中的应用. 高分子学报, 2013, (3): 300-319. doi: 10.3724/SP.J.1105.2013.12336

    2. [2]

      沈宸陆云 . 石墨烯/导电聚合物复合材料在超级电容器 电极材料方面的研究进展. 高分子学报, 2014, (10): 1328-1341. doi: 10.11777/j.issn1000-3304.2014.14225

    3. [3]

      孙同杰董侠胡海青王笃金 . 聚酰胺/聚苯胺导电复合材料制备方法的研究进展. 高分子学报, 2014, (4): 427-440. doi: 10.3724/SP.J.1105.2014.13426

    4. [4]

      刘晓霞江明 . 高分子囊泡和空心球的制备和几个研究亮点. 高分子学报, 2011, (9): 1007-1019. doi: 10.3724/SP.J.1105.2011.11169

    5. [5]

      张佑专李志荣郑咏梅王京霞宋延林江雷 . 仿生制备功能性聚合物光子晶体. 高分子学报, 2010, (11): 1253-1261. doi: 10.3724/SP.J.1105.2010.10217

    6. [6]

      谢震李玉森陈龙江东林 . 功能性共轭多孔聚合物材料. 高分子学报, 2016, (12): 1621-1634. doi: 10.11777/j.issn1000-3304.2016.16222

    7. [7]

      胡晨曦张晓红乔金樑 . 水热法制备非共轭聚集诱导发光聚合物及其在Fe3+检测中的应用. 高分子学报, 2021, 52(3): 281-286. doi: 10.11777/j.issn1000-3304.2020.20215

    8. [8]

      丁彬 . 功能微纳米聚合物纤维材料. 高分子学报, 2019, 50(8): 764-774. doi: 10.11777/j.issn1000-3304.2019.19069

    9. [9]

      张希王力彦徐江飞陈道勇史林启周永丰沈志豪 . 聚合物超分子体系:设计、组装与功能. 高分子学报, 2019, 50(10): 973-987. doi: 10.11777/j.issn1000-3304.2019.19109

    10. [10]

      В.А.КаргинБ.М.КоварскаяЛ.И.ГолубенковаМ.С.АкутинГ.Л.Слонимский关吉动刘雙成 . 新型聚合物的机械制备方法. 高分子学报, 1958, 2(2): 133-136.

    11. [11]

      张凯黄飞曹镛 . 水/醇溶共轭聚合物界面材料及其在光电器件中的应用. 高分子学报, 2017, (9): 1400-1414. doi: 10.11777/j.issn1000-3304.2017.17075

    12. [12]

      鹿现永黄达杨新林黄文强 . 蒸馏沉淀聚合法制备窄分散聚二乙烯基苯-co-丙烯腈功能聚合物微球. 高分子学报, 2007, (2): 103-107.

    13. [13]

      蒋旭红刘展眉涂伟萍 . 沉淀聚合法Poly(DVB-co-EGDMA-co-MAA) 功能聚合物微球的制备及表征. 高分子学报, 2012, (6): 633-639. doi: 10.3724/SP.J.1105.2012.11305

    14. [14]

      赵慧李利燕高俊刘瑞娜赵三平 . 环糊精聚合物功能化聚乳酸/聚乙烯基吡咯烷酮共聚物膜的制备与性能. 高分子学报, 2016, (9): 1221-1228. doi: 10.11777/j.issn1000-3304.2016.16006

    15. [15]

      董焕丽燕青青胡文平 . 共轭高分子光电功能材料的多尺度性能研究——聚合物电子学领域中的新机遇. 高分子学报, 2017, (8): 1246-1260. doi: 10.11777/j.issn1000-3304.2017.17127

    16. [16]

      张希沈家骢 . “浮萍”与“倒浮萍”聚合物超薄膜结构与功能组装. 高分子学报, 1997, (4): 469-473.

    17. [17]

      陈灿俞慧涛冯奕钰封伟 . 兼具导热和自修复功能的聚合物复合材料. 高分子学报, 2021, 52(3): 272-280. doi: 10.11777/j.issn1000-3304.2020.20229

    18. [18]

      徐江飞张希 . 超分子聚合物制备新方法:超分子单体的共价聚合. 高分子学报, 2017, (1): 3-8. doi: 10.11777/j.issn1000-3304.2017.16235

    19. [19]

      顾鹏程姚奕帆董焕丽胡文平 . 共轭聚合物微纳晶的制备与表征及其在场效应晶体管器件中的应用. 高分子学报, 2014, (8): 1029-1040. doi: 10.11777/j.issn1000-3304.2014.14103

    20. [20]

      蒋旭红涂伟萍 . 沉淀聚合法制备窄分散聚(甲基丙烯酸缩水甘油酯-co-乙二醇二甲基丙烯酸酯)功能聚合物微球. 高分子学报, 2009, (1): 84-87. doi: 10.3724/SP.J.1105.2009.00084

  • Figure 1.  Preparation of CPH by in situ polymerization.

    Figure 2.  (a) Hybrid gel synthesized by loading particles onto the surface of preformed CPH (Reprinted with permission from Ref.[12]; Copyright (2013) American Chemical Society); (b) Hybrid gel synthesized by in situ polymerization (Reprinted with permission from Ref.[13]; Copyright (2014) American Chemical Society).

    Figure 3.  Synthesis of Hep-MA/PANI CPH (Reprinted with permission from Ref.[17]; Copyright (2014) American Chemical Society).

    Figure 4.  Synthesis of CPH with self-assembled PEDOT belts through in situ polymerization in the double network matrix (Reprinted with permission from Ref.[18]; Copyright (2014) American Chemical Society).

    Figure 5.  Formation of the PEDOT-containing microfibers by using a microfluidic spinning approach (Reprinted with permission from Ref.[19]; Copyright (2019) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

    Figure 6.  Scheme of physical crosslinking hydrogels and chemical crosslinking hydrogels.

    Figure 7.  Preparation of the anti-freezing PVA-PEDOT/PSS (Reprinted with permission from Ref.[25]; Copyright (2017) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

    Figure 8.  The network structures of PNAGA-PAMPS/PEDOT/PSS (Reprinted with permission from Ref.[28]; Copyright (2017) Springer Nature).

    Figure 9.  The PANI gel using phytic acid as the dopant and cross-linker (Reprinted with permission from Ref.[33]; Copyright (2012) National Academy of Sciences).

    Figure 10.  Applications of conjugated polymer hydrogels.

    Figure 11.  Traditional electrode system (left) and Fe3O4/PPy hydrogels framework (right). (Reprinted with permission from Ref.[56]; Copyright (2017) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

    Figure 12.  Structural elasticity and interfacial synthesis of the hollow-sphere-structured PPy (Reprinted with permission from Ref.[59]; Copyright (2014) Macmillan Publishers Limited. All rights reserved.).

    Figure 13.  Schematic illustration of hydrogel fabrication (Reprinted with permission from Ref.[66]; Copyright (2012) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

    Table 1.  The main response factors and applications of smart CPH.

    FactorReference
    Smart hydrogelsRadiation[35,36]
    Thermo-responsive[41,42]
    pH-responsive[43]
    Dual (Thermo and pH)[44]
    Protease[45]
    Mechanically responsive[46]
    BiomedicalapplicationsDrug release[47]
    Antibacterial[44,48]
    Pesticide release[49]
    下载: 导出CSV
  • 加载中
图(13)表(1)
计量
  • PDF下载量:  2
  • 文章访问数:  1781
  • HTML全文浏览量:  1069
  • 引证文献数: 0
文章相关
  • 通讯作者:  廖耀祖, yzliao@dhu.edu.cn
  • 收稿日期:  2020-08-07
  • 修稿日期:  2020-08-29
  • 网络出版日期:  2020-09-11
  • 刊出日期:  2021-02-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计