ISSN 1000-3304CN 11-1857/O6

粒子-聚合物相互作用与粒子-粒子相互作用对聚合物基纳米复合物力学性能的影响

李少范 温向宁 鞠维龙 苏允兰 王笃金

引用本文: 李少范, 温向宁, 鞠维龙, 苏允兰, 王笃金. 粒子-聚合物相互作用与粒子-粒子相互作用对聚合物基纳米复合物力学性能的影响[J]. 高分子学报, 2021, 52(2): 146-157. doi: 10.11777/j.issn1000-3304.2020.20189 shu
Citation:  Shao-fan Li, Xiang-ning Wen, Wei-long Ju, Yun-lan Su and Du-jin Wang. Effects of Particle-polymer Interactions and Particle-particle Interactions on Mechanical Properties of Polymer Nanocomposites[J]. Acta Polymerica Sinica, 2021, 52(2): 146-157. doi: 10.11777/j.issn1000-3304.2020.20189 shu

粒子-聚合物相互作用与粒子-粒子相互作用对聚合物基纳米复合物力学性能的影响

    作者简介: 苏允兰,女,1974年生. 博士,中国科学院化学研究所副研究员. 1996年获中国海洋大学海洋化学系理学学士,2000年获中国科学院生态环境研究中心理学硕士,2003年获北京大学化学与分子工程学院理学博士,2004~2006年清华大学化学系博士后. 自2006年1月起在中国科学院化学研究所工作. 2013年10月~2014年10月在德国汉堡工业大学做访问学者. 研究方向为聚合物基纳米复合材料的界面微观结构与宏观性能之间的关系,已发表学术论文80余篇,他引1500次;
    通讯作者: 苏允兰, E-mail: ylsu@iccas.ac.cn
摘要: 聚合物基纳米复合物(PNCs)具有比传统高分子材料更加优异的光学、力学、热力学等性能,广泛应用于各个工程领域. 而纳米粒子(NPs)对材料性能提高的机理则是当前聚合物纳米复合物领域研究的重要问题,聚合物纳米复合体系相互作用的影响因素众多,至今尚未明确并完整建立复合体系相互作用与性能增强之间的关系. 本文总结了近年来关于纳米粒子填充聚合物基体力学性能的研究,从粒子-聚合物相互作用和粒子-粒子相互作用角度阐述了聚合物纳米复合体系力学性能的增强机理,并根据体系中不同的结构关系分别总结了聚合物/未改性纳米粒子复合体系和聚合物/聚合物接枝纳米粒子复合体系中影响力学性能的因素. 该部分内容具有重要的理论和实践意义,有助于构建复合体系微观结构与宏观性能之间的关系,进而对微观层面调控PNCs的力学性能提供指导.

English

    1. [1]

      Cai H Y, Peng F C, Wang Y X, Yi J Y, Cai X W, Liu H, Kong Q H. J Nanosci Nanotechnol, 2020, 20(10): 6406−6412 doi: 10.1166/jnn.2020.18120

    2. [2]

      Uyor U O, Popoola A P I, Popoola O M, Aigbodion V S. J Thermoplast Compos Mater, 2020, 33(2): 270−285 doi: 10.1177/0892705718805522

    3. [3]

      Alexandre M, Dubois P. Mater Sci Eng R-Rep, 2000, 28(1-2): 1−63 doi: 10.1016/S0927-796X(00)00012-7

    4. [4]

      Thostenson E T, Ren Z F, Chou T W. Compos Sci Technol, 2001, 61(13): 1899−1912 doi: 10.1016/S0266-3538(01)00094-X

    5. [5]

      Wetzel B, Haupert F, Zhang M Q. Compos Sci Technol, 2003, 63(14): 2055−2067 doi: 10.1016/S0266-3538(03)00115-5

    6. [6]

      Fu S Y, Feng X Q, Lauke B, Mai Y W. Compos Pt B-Eng, 2008, 39(6): 933−961 doi: 10.1016/j.compositesb.2008.01.002

    7. [7]

      Kozlov G V. Physics-Uspekhi, 2015, 58(1): 33−60 doi: 10.3367/UFNe.0185.201501c.0035

    8. [8]

      Kumar S K, Krishnamoorti R. Annu Rev Chem Biomol Eng, 2010, 1: 37−58

    9. [9]

      Song Y H, Zheng Q. Prog Mater Sci, 2016, 84: 1−58 doi: 10.1016/j.pmatsci.2016.09.002

    10. [10]

      Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Prog Polym Sci, 2013, 38(8): 1232−1261 doi: 10.1016/j.progpolymsci.2013.02.003

    11. [11]

      Zhao D, Ge S F, Senses E, Akcora P, Jestin J, Kumar S K. Macromolecules, 2015, 48(15): 5433−5438 doi: 10.1021/acs.macromol.5b00962

    12. [12]

      Heinrich G, Kluppel M, Kumar M, Kumar N, Domb A J, Arora M, Prokop A, Kozlov E, Carlesso G, Davidson J M. Filled Elastomers Drug Delivery Systems. Berlin: Springer-Verlag, 2002. 1−44

    13. [13]

      Gusev A A. Macromolecules, 2006, 39(18): 5960−5962 doi: 10.1021/ma061308z

    14. [14]

      Moll J F, Akcora P, Rungta A, Gong S, Colby R H, Benicewicz B C, Kumar S K. Macromolecules, 2011, 44(18): 7473−7477 doi: 10.1021/ma201200m

    15. [15]

      Long D, Sotta P. Rheol Acta, 2007, 46(8): 1029−1044 doi: 10.1007/s00397-007-0187-6

    16. [16]

      Zhu Z Y, Thompson T, Wang S Q, von Meerwall E D, Halasa A. Macromolecules, 2005, 38(21): 8816−8824 doi: 10.1021/ma050922s

    17. [17]

      Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Walter R, Friedrich K. Polymer, 2001, 42(1): 167−183 doi: 10.1016/S0032-3861(00)00325-6

    18. [18]

      Bieligmeyer M, Taheri S M, German I, Boisson C, Probst C, Milius W, Altstadt V, Breu J, Schmidt H W, D'Agosto F, Forster S. J Am Chem Soc, 2012, 134(44): 18157−18160 doi: 10.1021/ja307297c

    19. [19]

      Akcora P, Liu H, Kumar S K, Moll J, Li Y, Benicewicz B C, Schadler L S, Acehan D, Panagiotopoulos A Z, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby R H, Douglas J F. Nat Mater, 2009, 8: 354−359 doi: 10.1038/nmat2404

    20. [20]

      Qian Hujun(钱虎军), Lu Zhongyuan(吕中元). Acta Polymerica Sinica(高分子学报), 2020, 51(1): 55−65 doi: 10.11777/j.issn1000-3304.2020.19152

    21. [21]

      Liu Jun(刘军), Shen Jianxiang(沈建祥), Cao Dapeng(曹达鹏), Zhang Liqun(张立群). Acta Polymerica Sinica(高分子学报), 2016, (8): 1048−1061 doi: 10.11777/j.issn1000-3304.2016.16105

    22. [22]

      Genix A C, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov A P. ACS Appl Mater Interfaces, 2018, 10(39): 33601−33610 doi: 10.1021/acsami.8b13109

    23. [23]

      Carroll B, Cheng S, Sokolov A P. Macromolecules, 2017, 50(16): 6149−6163 doi: 10.1021/acs.macromol.7b00825

    24. [24]

      Berriot J, Montes H, Lequeux F, Long D, Sotta P. Macromolecules, 2002, 35(26): 9756−9762 doi: 10.1021/ma0212700

    25. [25]

      Harton S E, Kumar S K, Yang H, Koga T, Hicks K, Lee E, Mijovic J, Liu M, Vallery R S, Gidley D W. Macromolecules, 2010, 43(7): 3415−3421 doi: 10.1021/ma902484d

    26. [26]

      Rittigstein P, Priestley R D, Broadbelt L J, Torkelson J M. Nat Mater, 2007, 6(4): 278−282 doi: 10.1038/nmat1870

    27. [27]

      Holt A P, Griffin P J, Bocharova V, Agapov A L, Imel A E, Dadmun M D, Sangoro J R, Sokolov A P. Macromolecules, 2014, 47(5): 1837−1843 doi: 10.1021/ma5000317

    28. [28]

      Nguyen H K, Liang X, Ito M, Nakajima K. Macromolecules, 2018, 51(15): 6085−6091 doi: 10.1021/acs.macromol.8b01185

    29. [29]

      Mortazavian H, Fennell C J, Blum F D. Macromolecules, 2016, 49(1): 298−307 doi: 10.1021/acs.macromol.5b02214

    30. [30]

      Xu J Q, Liu Z S, Lan Y, Zuo B, Wang X P, Yang J P, Zhang W, Hu W B. Macromolecules, 2017, 50(17): 6804−6812 doi: 10.1021/acs.macromol.7b00922

    31. [31]

      Jouault N, Dalmas F, Boué F, Jestin J. Polymer, 2012, 53(3): 761−775 doi: 10.1016/j.polymer.2011.12.001

    32. [32]

      Long D, Lequeux F. Eur Phys J E, 2001, 4(3): 371−387 doi: 10.1007/s101890170120

    33. [33]

      Merabia S, Sotta P, Long D R. Macromolecules, 2008, 41(21): 8252−8266 doi: 10.1021/ma8014728

    34. [34]

      Montes H, Lequeux F, Berriot J. Macromolecules, 2003, 36(21): 8107−8118 doi: 10.1021/ma0344590

    35. [35]

      Cheng S W, Carroll B, Lu W, Fan F, Carrillo J M Y, Martin H, Holt A P, Kang N-G, Bocharova V, Mays J W, Sumpter B G, Dadmun M, Sokolov A P. Macromolecules, 2017, 50(6): 2397−2406 doi: 10.1021/acs.macromol.6b02816

    36. [36]

      Gong S S, Chen Q, Moll J F, Kumar S K, Colby R H. ACS Macro Lett, 2014, 3(8): 773−777 doi: 10.1021/mz500252f

    37. [37]

      Cheng S W, Bocharova V, Belianinov A, Xiong S, Kisliuk A, Somnath S, Holt A P, Ovchinnikova O S, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov A P. Nano Lett, 2016, 16(6): 3630−3637

    38. [38]

      Mujtaba A, Keller M, Ilisch S, Radusch H J, Beiner M, Thurn-Albrecht T, Saalwaechter K. ACS Macro Lett, 2014, 3(5): 481−485

    39. [39]

      Jiang B W, Zhu L Q, Zhao C Z, Chen Z R. Polym Compos, 2017, 38(6): 1112−1117

    40. [40]

      Baeza G P, Dessi C, Costanzo S, Zhao D, Gong S, Alegria A, Colby R H, Rubinstein M, Vlassopoulos D, Kumar S K. Nat Commun, 2016, 7: 1−6

    41. [41]

      Zhang Q, Archer L A. Langmuir, 2002, 18(26): 10435−10442

    42. [42]

      Chen Q, Gong S, Moll J, Zhao D, Kumar S K, Colby R H. ACS Macro Lett, 2015, 4(4): 398−402 doi: 10.1021/acsmacrolett.5b00002

    43. [43]

      Mermet-Guyennet M R B, de Castro J G, Varol H S, Habibi M, Hosseinkhani B, Martzel N, Sprik R, Denn M M, Zaccone A, Parekh S H, Bonn D. Polymer, 2015, 73: 170−173 doi: 10.1016/j.polymer.2015.07.041

    44. [44]

      Zhu A J, Sternstein S S. Compos Sci Technol, 2003, 63(8): 1113−1126 doi: 10.1016/S0266-3538(03)00032-0

    45. [45]

      Sternstein S S, Zhu A J. Macromolecules, 2002, 35(19): 7262−7273 doi: 10.1021/ma020482u

    46. [46]

      Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boué F. Macromolecules, 2009, 42(6): 2031−2040 doi: 10.1021/ma801908u

    47. [47]

      Akcora P, Kumar S K, Moll J, Lewis S, Schadler L S, Li Y, Benicewicz B C, Sandy A, Narayanan S, Ilavsky J, Thiyagarajan P, Colby R H, Douglas J F. Macromolecules, 2010, 43(2): 1003−1010 doi: 10.1021/ma902072d

    48. [48]

      Akcora P, Kumar S K, Sakai V G, Li Y, Benicewicz B C, Schadler L S. Macromolecules, 2010, 43(19): 8275−8281 doi: 10.1021/ma101240j

    49. [49]

      Srivastava S, Agarwal P, Archer L A. Langmuir, 2012, 28(15): 6276−6281 doi: 10.1021/la2049234

    50. [50]

      Chevigny C, Dalmas F, Di Cola E, Gigmes D, Bertin D, Boue F, Jestin J. Macromolecules, 2011, 44(1): 122−133 doi: 10.1021/ma101332s

    51. [51]

      Senses E, Jiao Y, Akcora P. Soft Matter, 2014, 10(25): 4464−4470 doi: 10.1039/C4SM00460D

    52. [52]

      Hashemi A, Jouault N, Williams G A, Zhao D, Cheng K J, Kysar J W, Guan Z, Kumar S K. Nano Lett, 2015, 15(8): 5465−5471 doi: 10.1021/acs.nanolett.5b01859

    53. [53]

      Maillard D, Kumar S K, Fragneaud B, Kysar J W, Rungta A, Benicewicz B C, Deng H, Brinson L C, Douglas J F. Nano Lett, 2012, 12(8): 3909−3914 doi: 10.1021/nl301792g

    54. [54]

      Lin Y, Hu S N, Wu G Z. J Phys Chem C, 2019, 123(11): 6616−6626 doi: 10.1021/acs.jpcc.8b12519

    55. [55]

      Abbas Z M, Tawfilas M, Khani M M, Golian K, Marsh Z M, Jhalaria M, Simonutti R, Stefik M, Kumar S K, Benicewicz B C. Polymer, 2019, 171: 96−105 doi: 10.1016/j.polymer.2019.03.031

    56. [56]

      Wu F, Zhang B, Yang W, Liu Z Y, Yang M B. Polymer, 2014, 55(22): 5760−5772 doi: 10.1016/j.polymer.2014.08.070

    57. [57]

      Chevigny C, Jouault N, Dalmas F, Boue F, Jestin J. J Polym Sci, Part B: Polym Phys, 2011, 49(11): 781−791 doi: 10.1002/polb.22246

    58. [58]

      Pirner D, Dulle M, Foerster S. Polymer, 2018, 145: 101−107 doi: 10.1016/j.polymer.2018.04.035

    59. [59]

      Jancar J, Fekete E, Hornsby P, Jancar J, Pukánszky B, Rothon R. Mineral Fillers in Thermoplastics I. Berlin: Springer-Verlag, 1999. 155–217

    60. [60]

      Al-Saleh M H, Sundararaj U. Compos Part A, 2011, (42): 2126−2142

    61. [61]

      Oberdisse J. Soft Matter, 2006, 2(1): 29−36 doi: 10.1039/B511959F

    62. [62]

      Musino D, Genix A C, Chauveau E, Bizien T, Oberdisse J. Nanoscale, 2020, 12(6): 3907−3915 doi: 10.1039/C9NR09395H

    63. [63]

      Tatou M, Genix A C, Imaz A, Forcada J, Banc A, Schweins R, Grillo I, Oberdisse J. Macromolecules, 2011, 44(22): 9029−9039 doi: 10.1021/ma2012893

    64. [64]

      You W, Yu W, Zhou C X. Soft Matter, 2017, 13(22): 4088−4098

    65. [65]

      Song Y H, Zeng L B, Zheng Q. Chinese J Polym Sci, 2017, 35(11): 1436−1446 doi: 10.1007/s10118-017-1987-5

    66. [66]

      Chen L, Song L X, Li J, Chen P Z, Huang N D, Li L B. Macromol Mater Eng, 2016, 301(11): 1390−1401 doi: 10.1002/mame.201600235

    67. [67]

      Bouty A, Petitjean L, Degrandcourt C, Gummel J, Kwasniewski P, Meneau F, Boue F, Couty M, Jestin J. Macromolecules, 2014, 47(15): 5365−5378 doi: 10.1021/ma500582p

    68. [68]

      Camenzind A, Schweizer T, Sztucki M, Pratsinis S E. Polymer, 2010, 51(8): 1796−1804 doi: 10.1016/j.polymer.2010.02.030

    69. [69]

      Hassanabadi H M, Wilhelm M, Rodrigue D. Rheol Acta, 2014, 53(10-11): 869−882

    70. [70]

      Cassagnau P. Polymer, 2003, 44(8): 2455−2462

    71. [71]

      Zhang Q H, Rastogi S, Chen D J, Lippits D, Lemstra P J. Carbon, 2006, 44(4): 778−785

    72. [72]

      Xu D H, Wang Z G, Douglas J F. Macromolecules, 2008, 41(3): 815−825

    73. [73]

      Zhang Q H, Fang F, Zhao X, Li Y Z, Zhu M F, Chen D J. J Phys Chem B, 2008, 112(40): 12606−12611

    74. [74]

      Kayatin M J, Davis V A. Macromolecules, 2009, 42(17): 6624−6632

    75. [75]

      Lee J I, Yang S B, Jung H T. Macromolecules, 2009, 42(21): 8328−8334

    76. [76]

      Huegun A, Fernandez M, Munoz M E, Santamaria A. Compos Sci Technol, 2012, 72(13): 1602−1607

    77. [77]

      Mahi H, Rodrigue D. Rheol Acta, 2012, 51(2): 127−142

    78. [78]

      Ghanbari A, Heuzey M C, Carreau P J, Minh-Tan T T. Rheol Acta, 2013, 52(1): 59−74

    79. [79]

      Lim H T, Ahn K H, Hong J S, Hyun K. J Rheol, 2013, 57(3): 767−789

    80. [80]

      Penu C, Hu G H, Fernandez A, Marchal P, Choplin L. Polym Eng Sci, 2012, 52(10): 2173−2181

    81. [81]

      Yuan L J, Wu D F, Zhang M, Zhou W D, Lin D P. Ind Eng Chem Res, 2011, 50(24): 14186−14192

    82. [82]

      Le Strat D, Dalmas F, Randriamahefa S, Jestin J, Wintgens V. Polymer, 2013, 54(5): 1466−1479

    83. [83]

      Chabert E, Bornert M, Bourgeat-Lami E, Cavaille J Y, Dendievel R, Gauthier C, Putaux U, Zaoui A. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2004, 381(1-2): 320−330

    84. [84]

      Park S J, Kim S, Yong D, Choe Y, Bang J, Kim J U. Soft Matter, 2018, 14(6): 1026−1042

    85. [85]

      Wang Z X, Zheng Z J, Liu J, Wu Y P, Zhang L Q. Polymers, 2016, 8(9): 270

    86. [86]

      Chao H K, Riggleman R A. Polymer, 2013, 54(19): 5222−5229

    87. [87]

      Shen J X, Liu J, Li H D, Gao Y Y, Li X L, Wu Y P, Zhang L Q. Phys Chem Chem Phys, 2015, 17(11): 7196−7207

    1. [1]

      徐文卿吕亚栋孔米秋黄亚江李光宪 . 原位聚合水性聚氨酯/聚多巴胺粒子复合材料的制备及性能研究. 高分子学报, 2019, 50(7): 710-720. doi: 10.11777/j.issn1000-3304.2018.18250

    2. [2]

      宋建会周凤王湘任毅张晓红郭鸣明乔金樑 . 纤维素/全硫化弹性纳米粒子复合膜的制备与性能. 高分子学报, 2017, (4): 676-682. doi: 10.11777/j.issn1000-3304.2017.16190

    3. [3]

      张霖杰叶德展唐金波胡孝勤张熙 . 木质素磺酸钙与聚乙烯醇的相互作用及共混材料的性能. 高分子学报, 2016, (4): 471-476. doi: 10.11777/j.issn1000-3304.2016.15239

    4. [4]

      陈勇伟张日东陈欣冯新星来侃周岚张建春 . 牵伸作用对尼龙6纤维晶型结构及力学性能的影响. 高分子学报, 2014, (12): 1643-1647. doi: 10.11777/j.issn1000-3304.2014.14129

    5. [5]

      张亚明高凤翔周庆海秦玉升王献红王佛松 . 二氧化碳/环氧丙烷/马来酸酐三元共聚物对PPC/PHB共混物力学性能的影响. 高分子学报, 2015, (1): 106-112. doi: 10.11777/j.issn1000-3304.2015.14215

    6. [6]

      吕维扬叶维娟傅华康杜淼郑强 . 聚乙烯醇/层状双金属氢氧化物复合膜的原位制备及其性能研究. 高分子学报, 2015, (6): 699-705. doi: 10.11777/j.issn1000-3304.2015.14412

    7. [7]

      彭中樑易丹青柯毓才马永梅魏毅王佛松马胜娟刘会群黄关葆 . 聚酰胺PACM12-PA66共聚物的制备及其性能研究. 高分子学报, 2014, (7): 976-982. doi: 10.11777/j.issn1000-3304.2014.13428

    8. [8]

      付浩肖长发孙乐乐潘健权全 . 偏氟乙烯-六氟丙烯共聚物纤维结构与性能表征. 高分子学报, 2018, 0(5): 624-631. doi: 10.11777/j.issn1000-3004.2017.17158

    9. [9]

      谭珏郑裕东彭江吴健高爽田茹陈红谚 . 层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究. 高分子学报, 2012, (4): 351-356. doi: 10.3724/SP.J.1105.2012.11171

    10. [10]

      陈姿晔相恒学胡泽旭倪张根朱美芳 . 异相成核和拉伸诱导对生物基PHBV复合纤维结晶结构与力学性能的影响. 高分子学报, 2017, (7): 1121-1129. doi: 10.11777/j.issn1000-3304.2017.16366

    11. [11]

      郑香允陈晓婷李道克冯传义 . 聚离子液体修饰碳纳米管及其对环氧树脂力学性能的影响. 高分子学报, 2016, (2): 264-270. doi: 10.11777/j.issn1000-3304.2016.15248

    12. [12]

      高万里陈宝书沈佳斌郭少云 . 聚丙烯/阻燃剂填充聚丙烯交替层状复合材料的 阻燃及力学性能研究. 高分子学报, 2014, (10): 1350-1355. doi: 10.11777/j.issn1000-3304.2014.14015

    13. [13]

      古菊林路罗远芳贾德民 . 纳米微晶纤维素对炭黑补强天然橡胶力学性能和动态性能的影响. 高分子学报, 2012, (8): 852-860. doi: 10.3724/SP.J.1105.2012.11377

    14. [14]

      章越徐军郭宝华 . 聚乳酸/凹凸棒土纳米复合材料的结构与性能. 高分子学报, 2012, (1): 83-88. doi: 10.3724/SP.J.1105.2012.11070

    15. [15]

      甄冉迟茜文王星元杨阔蒋引珊李芳菲薛兵 . 聚氧化乙烯/高岭石聚合物电解质的制备与表征. 高分子学报, 2017, (8): 1312-1319. doi: 10.11777/j.issn1000-3304.2017.16332

    16. [16]

      丁芳张欢丁明明石彤非李云琦安立佳 . 聚合物弹性体材料应力-应变关系的理论研究. 高分子学报, 2019, 50(12): 1357-1366. doi: 10.11777/j.issn1000-3304.2019.19132

    17. [17]

      李宁宁王雷刘源梁好均 . 高分子纳米复合材料拉伸及压缩的分子动力学模拟. 高分子学报, 2014, (9): 1292-1300. doi: 10.11777/j.issn1000-3304.2014.14052

    18. [18]

      李良钊张秀芹罗发亮赵莹王笃金 . 改性纳米碳酸钙-聚丙烯复合材料的结构与性能研究. 高分子学报, 2011, (10): 1218-1223. doi: 10.3724/SP.J.1105.2011.10334

    19. [19]

      许恩惠郑强王彩红张敏鲁圣军于杰 . 尼龙6/有机锂皂石纳米复合材料的制备及性能研究. 高分子学报, 2015, (5): 515-523. doi: 10.11777/j.issn1000-3304.2015.14345

    20. [20]

      黄汉雄吴泽关伟盛汪斌 . 微注塑聚丙烯/埃洛石纳米管复合材料制品的结构和性能. 高分子学报, 2013, (12): 1514-1519. doi: 10.3724/SP.J.1105.2013.13116

  • Figure 1.  At low volume fractions and/or at high temperatures, the glassy layers around filler particles (light gray dashed circles) do not overlap. At lower temperature, they do overlap and build glassy bridges between fillers (plain white circles) (Reinforcement then becomes much higher). (Reprinted with permission from Ref.[33]; Copyright (2008) American Chemical Society).

    Figure 2.  Oscillatory shear experiments for (a) Nissan-St/PS and (b) Nissan-St/PMMA with in insert the mechanical behavior of 5 vol% Ludox LS/PMMA nanocomposite. Master curves of G′ and G′′ are obtained using TTS principle with a reference temperature of 143 °C. (Reprinted with permission from Ref.[31]; Copyright (2011) Elsevier Ltd.).

    Figure 3.  Experimental “morphology diagram” of polymer-tethered particles mixed with matrix polymers. Red symbols represent spherical aggregates, blue symbols are sheets and interconnected structures, cyan symbols are short strings and purple symbols are dispersed particles. The lines that separate the different regions are merely guides to the eye. (Reprinted with permission from Ref.[19]; Copyright (2009) Macmillan Publishers Limited).

    Figure 4.  (A) Morphology diagram based on grafting density, σ, and grafted/matrix chain length ratio, α, for PS grafted silica nanoparticles (14 nm diameter) dispersed in a PS matrix and annealed at 150 °C. (B) Reinforcement percentage of the (a) elastic modulus, (b) yield stress, and (c) failure strain relative to the pure polymer depending on grafting density and grafted/matrix chain length ratio. The loading of the silica core was 5 mass% in all the samples. (Reprinted with permission from Ref.[53]; Copyright (2012) American Chemical Society).

    Figure 5.  Modulus enhancement (Ec/Eo) of filled composites (volume fraction) for both predicted () and experimental samples C18-SiO2; 38k-high density; 73k-high density; 161k-high density; 34.8k-low density; 134k-low density (Reprinted with permission from Ref.[55]; Copyright (2019) Elsevier Ltd.).

    Figure 6.  Relative reinforcement from stress/strain curves as a function of silica volume fraction for grafted (green circles) and ungrafted (blue squares) silica nanocomposites. The black dash line corresponds to the Guth and Gold predictions for spherical fillers. (Reprinted with permission from Ref.[57]; Copyright (2011) Wiley Periodicals, Inc.).

    Figure 7.  Relative reinforcement from stress/strain curves as a function of silica volume fraction for grafted (green circles) and ungrafted (blue squares) silica nanocomposites. The black dash line corresponds to the Guth and Gold predictions for spherical fillers. (Reprinted with permission from Ref. [67]; Copyright (2011) Wiley Periodicals, Inc.).

    Table 1.  List of references for percolation concentration in different PN

    Polymer matrixNanofillersThreshold concentrationReference
    PolystyreneSiO27 vol%Jouault et al.[46]
    Polyethylene oxideSiO22 vol%Archer et al.[41]
    Ethylene vinyl acetateSiO23.3 vol%Philippe[70]
    High density polyethyleneSingle-walled carbon nanotubes1.5 wt%Zhang et al.[71]
    PolypropyleneMulti-walled carbon nanotubes2 wt%Xu et al.[72]
    PolystyreneMulti-walled carbon nanotubes1.25 wt%Zhang et al.[73]
    PolyesterSingle-walled carbon nanotubes0.1 vol%Kayatin and Davis[74]
    PolypropyleneMulti-walled carbon nanotubes1 wt%Lee et al.[75]
    PolypropyleneMulti-walled carbon nanotubes2 wt%–4 wt%Huegun et al.[76]
    Ethylene vinyl acetateNano-crystalline cellulose7.5 wt%Mahi and Rodrigue[77]
    Polyethylene terephthalateClay3 wt%Ghanbari et al.[78]
    PolycaprolactoneMulti-walled carbon nanotubes0.5 wt%Lim et al.[79]
    PolystyreneMulti-walled carbon nanotubes1 wt%Penu et al.[80]
    Polybutylene succinateMulti-walled carbon nanotubes3 wt%–4 wt%Yuan et al.[81]
    Natural rubbercarbon black30 phrChen et al.[66]
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  3
  • 文章访问数:  1242
  • HTML全文浏览量:  761
  • 引证文献数: 0
文章相关
  • 通讯作者:  苏允兰, ylsu@iccas.ac.cn
  • 收稿日期:  2020-08-10
  • 修稿日期:  2020-09-21
  • 刊出日期:  2021-02-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计