ISSN 1000-3304CN 11-1857/O6

流变技术在高分子表征中的应用:如何正确地进行剪切流变测试

刘双 曹晓 张嘉琪 韩迎春 赵欣悦 陈全

引用本文: 刘双, 曹晓, 张嘉琪, 韩迎春, 赵欣悦, 陈全. 流变技术在高分子表征中的应用:如何正确地进行剪切流变测试[J]. 高分子学报, 2021, 52(4): 406-422. doi: 10.11777/j.issn1000-3304.2020.20230 shu
Citation:  Shuang Liu, Xiao Cao, Jia-qi Zhang, Ying-chun Han, Xin-yue Zhao and Quan Chen. Toward Correct Measurements of Shear Rheometry[J]. Acta Polymerica Sinica, 2021, 52(4): 406-422. doi: 10.11777/j.issn1000-3304.2020.20230 shu

流变技术在高分子表征中的应用:如何正确地进行剪切流变测试

    作者简介: 陈全,男,1981年生. 中国科学院长春应用化学研究所研究员. 本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造. 于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的Distinguished Young Rheologist Award (2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《Nihon Reoroji Gakkaishi》(日本流变学会志)和《高分子学报》编委;
    通讯作者: 陈全, E-mail: qchen@ciac.ac.cn
摘要: 流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工. 本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.

English

    1. [1]

      Tadmor Z, Gogos C G. Principles of Polymer Processing. 2nd ed. Hoboken, New Jersey: John Wiley & Sons, 2013

    2. [2]

      Ptaszek P. Large Amplitude Oscillatory Shear (LAOS) measurement and fourier-transform rheology: application to food. In: Ahmed J, Ptaszek P, Basu S, eds. Advances in Food Rheology and Its Applications. London: Woodhead Publishing, 2017. 87−123

    3. [3]

      Kaneda I. Rheology Control Agents for Cosmetics. Rheology of Biological Soft Matter. Tokyo: Springer, 2017, 295−321

    4. [4]

      Eley R R. J Coat Technol Res, 2019, 16(2): 263−305 doi: 10.1007/s11998-019-00187-5

    5. [5]

      Ahmed J, Ptaszek P, Basu S. Advances in Food Rheology and Its Applications. London: Woodhead Publishing, 2016

    6. [6]

      Zhang Z, Liu C, Cao X, Gao L, Chen Q. Macromolecules, 2016, 49(23): 9192−9202 doi: 10.1021/acs.macromol.6b02017

    7. [7]

      Chen Q, Tudryn G J, Colby R H. J Rheol, 2013, 57(5): 1441−1462 doi: 10.1122/1.4818868

    8. [8]

      Liu S, Wu S, Chen Q. ACS Macro Lett, 2020, 9: 917−923 doi: 10.1021/acsmacrolett.0c00256

    9. [9]

      Larson R G. The Structure and Rheology of Complex Fluids. New York: Oxford University Press, 1999

    10. [10]

      Mihai M, Huneault M A, Favis B D. Polym Eng Sci, 2010, 50(3): 629−642 doi: 10.1002/pen.21561

    11. [11]

      Ariawan A B, Hatzikiriakos S G, Goyal S K, Hay H. Adv Polym Technol: J Polym Process Inst, 2001, 20(1): 1−13

    12. [12]

      Lundahl M J, Berta M, Ago M, Stading M, Rojas O J. Eur Polym J, 2018, 109: 367−378 doi: 10.1016/j.eurpolymj.2018.10.006

    13. [13]

      Li B, Yu W, Cao X, Chen Q. J Rheol, 2020, 64(1): 177−190 doi: 10.1122/1.5134532

    14. [14]

      Watanabe H, Matsumiya Y, Chen Q, Yu W. Rheological characterization of polymeric liquids. In: Matyjaszewski K, Möller M, eds. Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier, 2012. 683−722

    15. [15]

      Marín J M R, Huusom J K, Alvarez N J, Huang Q, Rasmussen H K, Bach A, Skov A L, Hassager O. J Non-Newton Fluid, 2013, 194: 14−22 doi: 10.1016/j.jnnfm.2012.10.007

    16. [16]

      Watanabe H, Matsumiya Y, Inoue T. Macromolecules, 2002, 35(6): 2339−2357 doi: 10.1021/ma011782z

    17. [17]

      Yoshida H, Adachi K, Watanabe H, Kotaka T. Polym J, 1989, 21(11): 863−872 doi: 10.1295/polymj.21.863

    18. [18]

      Trouton F T. Proc R Soc London, Ser A, 1906, 77(519): 426−440 doi: 10.1098/rspa.1906.0038

    19. [19]

      Liu C, Zhang J, Zhang Z, Huang S, Chen Q, Colby R H. Macromolecules, 2020, 53(8): 3071−3081 doi: 10.1021/acs.macromol.9b02431

    20. [20]

      Zhang J, Liu C, Zhao X, Zhang Z, Chen Q. Soft Matter, 2020, 16(21): 4955−4960 doi: 10.1039/D0SM00572J

    21. [21]

      Buscall R, McGowan J I, Morton-Jones A J. J Rheol, 1993, 37(4): 621−641 doi: 10.1122/1.550387

    22. [22]

      Buscall R. J Rheol, 2010, 54(6): 1177−1183 doi: 10.1122/1.3495981

    23. [23]

      Ballesta P, Petekidis G, Isa L, Poon W, Besseling R. J Rheol, 2012, 56(5): 1005−1037 doi: 10.1122/1.4719775

    24. [24]

      Magda J, Larson R. J Non-Newton Fluid, 1988, 30(1): 1−19 doi: 10.1016/0377-0257(88)80014-4

    25. [25]

      Costanzo S, Huang Q, Ianniruberto G, Marrucci G, Hassager O, Vlassopoulos D. Macromolecules, 2016, 49(10): 3925−3935 doi: 10.1021/acs.macromol.6b00409

    26. [26]

      Liu C Y, Yao M, Garritano R G, Franck A J, Bailly C. Rheol Acta, 2011, 50(5−6): 537 doi: 10.1007/s00397-011-0560-3

    27. [27]

      Pogodina N, Nowak M, Läuger J, Klein C, Wilhelm M, Friedrich C. J Rheol, 2011, 55(2): 241−256 doi: 10.1122/1.3528651

    28. [28]

      Gottlieb M, Macosko C. Rheol Acta, 1982, 21(1): 90−94 doi: 10.1007/BF01520709

    29. [29]

      Hutcheson S, McKenna G. J Chem Phys, 2008, 129(7): 074502 doi: 10.1063/1.2965528

    30. [30]

      Krieger I M. J Rheol, 1990, 34(4): 471−483 doi: 10.1122/1.550138

    31. [31]

      Läuger J, Stettin H. J Rheol, 2016, 60(3): 393−406 doi: 10.1122/1.4944512

    32. [32]

      Ewoldt R H, Johnston M T, Caretta L M. Experimental challenges of shear rheology: how to avoid bad data. Complex Fluids In Biological Systems. In: Spagnolie S E, ed. Complex Fluids in Biological Systems. New York: Springer, 2015. 207−241

    33. [33]

      Yosick J A, Giacomin J A, Stewart W E, Ding F. Rheol Acta, 1998, 37(4): 365−373 doi: 10.1007/s003970050123

    34. [34]

      Schrag J L. Transactions of the Society of Rheology, 1977, 21(3): 399−413 doi: 10.1122/1.549445

    35. [35]

      Shaqfeh E S. Annu Rev Fluid Mech, 1996, 28(1): 129−185 doi: 10.1146/annurev.fl.28.010196.001021

    36. [36]

      McKinley G H, Pakdel P, Öztekin A. J Non-Newton Fluid, 1996, 67: 19−47 doi: 10.1016/S0377-0257(96)01453-X

    37. [37]

      Pakdel P, McKinley G H. Phys Rev Lett, 1996, 77(12): 2459 doi: 10.1103/PhysRevLett.77.2459

    38. [38]

      Chandrasekhar S. Hydromagnets and Hydrodynamics Stability. New York: Dover Publishing, 1981

    39. [39]

      Larson R G. Rheol Acta, 1992, 31(3): 213−263 doi: 10.1007/BF00366504

    40. [40]

      Taylor G I. Philos Trans R Soc London, Ser A, 1923, 223(605-615): 289−343 doi: 10.1098/rsta.1923.0008

    41. [41]

      Turian R M. Ind Eng Chem Fundam, 1972, 11(3): 361−368 doi: 10.1021/i160043a014

    42. [42]

      Andablo-Reyes E, Vicente J d, Hidalgo-Alvarez R. J Rheol, 2011, 55(5): 981−986 doi: 10.1122/1.3606633

    43. [43]

      Griffiths D, Walters K. J Fluid Mech, 1970, 42(2): 379−399 doi: 10.1017/S0022112070001337

    44. [44]

      Johnston M T, Ewoldt R H. J Rheol, 2013, 57(6): 1515−1532 doi: 10.1122/1.4819914

    45. [45]

      Shipman R W, Denn M M, Keunings R. Ind Eng Chem Res, 1991, 30(5): 918−922 doi: 10.1021/ie00053a014

    46. [46]

      Sharma V, Jaishankar A, Wang Y C, McKinley G H. Soft Matter, 2011, 7(11): 5150−5160 doi: 10.1039/c0sm01312a

    47. [47]

      Castellanos M M, Pathak J A, Colby R H. Soft Matter, 2014, 10(1): 122−131 doi: 10.1039/C3SM51994E

    48. [48]

      Wolff F, Münstedt H. Rheol Acta, 2013, 52(4): 287−289 doi: 10.1007/s00397-013-0687-5

    49. [49]

      Shabbir A, Huang Q, Baeza G P, Vlassopoulos D, Chen Q, Colby R H, Alvarez N J, Hassager O. J Rheol, 2017, 61(6): 1279−1289 doi: 10.1122/1.4998158

    50. [50]

      Stadler F J. Korea-Aust Rheol J, 2014, 26(3): 277−291 doi: 10.1007/s13367-014-0032-2

    51. [51]

      Hawke L G D, Romano D, Rastogi S. Macromolecules, 2019, 52(22): 8849−8866 doi: 10.1021/acs.macromol.9b01152

    52. [52]

      Wang X, Tao F, Sun P, Zhou D, Wang Z, Gu Q, Hu J, Xue G. Macromolecules, 2007, 40(14): 4736−4739 doi: 10.1021/ma0700025

    53. [53]

      Teng C, Gao Y, Wang X, Jiang W, Zhang C, Wang R, Zhou D, Xue G. Macromolecules, 2012, 45(16): 6648−6651 doi: 10.1021/ma300885w

    54. [54]

      Lippits D R, Rastogi S, Talebi S, Bailly C. Macromolecules, 2006, 39(26): 8882−8885 doi: 10.1021/ma062284z

    55. [55]

      Stadler F J, Still T, Fytas G, Bailly C. Macromolecules, 2010, 43(18): 7771−7778 doi: 10.1021/ma101028b

    56. [56]

      Ling G H, Wang Y, Weiss R. Macromolecules, 2012, 45(1): 481−490 doi: 10.1021/ma201854w

    57. [57]

      Scherz L F, Costanzo S, Huang Q, Schlüter A D, Vlassopoulos D. Macromolecules, 2017, 50(13): 5176−5187 doi: 10.1021/acs.macromol.7b00747

    1. [1]

      于逢源张洪斌 . 非线性大应变振荡剪切流场中PP结晶行为的傅立叶转变流变学研究. 高分子学报, 2010, (3): 372-376. doi: 10.3724/SP.J.1105.2010.00372

    2. [2]

      李文林牛艳华王志刚张军 . 网络结构对多层聚乙烯共混物界面扩散行为的影响. 高分子学报, 2012, (9): 1007-1014. doi: 10.3724/SP.J.1105.2012.12037

    3. [3]

      阳京京方华高章亚琼施文涛陈鹏王志刚 . 黏弹性对聚丙烯/碳纳米管复合材料熔体挤出特性影响研究. 高分子学报, 2013, (10): 1325-1333. doi: 10.3724/SP.J.1105.2013.13080

    4. [4]

      李文林牛艳华王志刚 . 聚合物熔体界面扩散理论与研究方法. 高分子学报, 2013, (7): 817-826. doi: 10.3724/SP.J.1105.2013.13032

    5. [5]

      申伟何鹏俞炜周持兴 . 介观相分离对等规聚丙烯/烯烃嵌段共聚物共混体系相容性的影响. 高分子学报, 2014, (8): 1116-1123. doi: 10.11777/j.issn1000-3304.2014.13463

    6. [6]

      罗锦添欧阳希凯刘庚鑫 . 巨型分子的黏弹性研究进展. 高分子学报, 2020, 51(7): 687-697. doi: 10.11777/j.issn1000-3304.2020.20056

    7. [7]

      陈青范毓润郑强 . 剪切流场诱导iPP等温结晶行为的研究. 高分子学报, 2007, (5): 467-471.

    8. [8]

      王伟徐德时 . 壳聚糖浓溶液流变性质研究──零剪切粘度的测定和外推. 高分子学报, 1995, (3): 291-295.

    9. [9]

      刘冬梅刘茗竹卢宇源安立佳张汉壮 . 近平衡态与快速启动剪切下缠结高分子流体流变行为研究. 高分子学报, 2015, (7): 858-866. doi: 10.11777/j.issn1000-3304.2015.15055

    10. [10]

      许少锋汪久根 . 高分子链在微通道剪切流中的迁移机制及浓度的影响. 高分子学报, 2015, (3): 346-355. doi: 10.11777/j.issn1000-3304.2015.14290

    11. [11]

      李润明俞炜周持兴 . 流变学方法测定共混物相图及其分辨尺度探讨. 高分子学报, 2008, (5): 481-486. doi: 10.3724/SP.J.1105.2008.00481

    12. [12]

      杨红梅杨永柱张小虎郑强 . 聚乙烯交联过程结构演化的流变学研究. 高分子学报, 2009, (8): 741-747. doi: 10.3724/SP.J.1105.2009.00741

    13. [13]

      杜雪许元泽钱人元 . 顺丁生胶加工行为的流变学表征. 高分子学报, 1986, (6): 458-462.

    14. [14]

      许元泽杜雪 . 聚丙烯熔体流动中结构化的流变学研究. 高分子学报, 1986, (4): 304-307.

    15. [15]

      杜宇杨凯俞炜周持兴 . 触变/非触变水凝胶的傅里叶变换流变学研究. 高分子学报, 2012, (12): 1376-1382. doi: 10.3724/SP.J.1105.2012.12197

    16. [16]

      杨敖霜王宇刘正英杨伟谢邦互杨鸣波 . 聚合物熔体界面分子链扩散的流变学研究. 高分子学报, 2013, (3): 361-366. doi: 10.3724/SP.J.1105.2013.12261

    17. [17]

      陆佳俊白绘宇王玮刘静马丕明东为富刘晓亚 . 动态流变学对PVDF/PTW共混物流体相容性研究. 高分子学报, 2016, (3): 315-323. doi: 10.11777/j.issn1000-3304.2016.15206

    18. [18]

      罗贤光 . 橡胶中简单剪切与纯剪切的关系. 高分子学报, 1994, (4): 385-391.

    19. [19]

      谢严莉上官勇刚郑强 . 抗冲聚丙烯共聚物熔体结构演化的动态流变学表征. 高分子学报, 2008, (1): 93-96. doi: 10.3724/SP.J.1105.2008.00093

    20. [20]

      谢瑞杨秉新姜炳政章其忠许元泽 . 高聚物两相体系相行为的流变学研究──Ⅱ.嵌段高聚物微相溶合的研究. 高分子学报, 1994, (2): 134-140.

  • Figure 1.  Illustration of two representative modes of deformation: the simple shear for which the direction of velocity gradient is perpendicular to that of velocity, and the uniaxial elongation for which the direction of velocity gradient is parallel to that of velocity. (Reprinted with permission from Ref.[14]; Copyright (2012) Elsevier)

    Figure 2.  Geometry and parameters Kγ and Kσ of parallel-plate, cone-and-plate and Couette fixtures

    Figure 3.  The different responses of Newtonian fluid, Hookean solid, and viscoelastic materials to the imposed steady flow (stress growth, transient or steady mode that depends on the focus), step strain (stress relaxation, transient mode), step stress (creep and recovery, transient mode) and small amplitude oscillatory shear (SAOS, dynamic mode).

    Figure 4.  The secondary flow occurs when sample under rotary geometry moves radially outward and sample on the static geometry moves radially inward.

    Figure 5.  Schematic view of the CPP fixture. Green: cone; red: sample; blue: outer partition (section); yellow: translation stages (section); orange: bridge (section); grey: inner tool (Drawing not in scale). The sample disk should have size sufficiently larger than the inner plate. (Reprinted with permission from Ref.[25]; Copyright (2016) American Chemical Society)

    Figure 6.  (a) The effect of geometry compliance on linear viscoelasticity; (b) Comparison of commanded strain (as 100%), measured strain (with force rebalance torque transducers (FRT) compliance correction), and corrected strain (with tool correction) obtained for a polyisobutylene sample at −20 °C using 25 mm parallel plates (Reprinted with permission from Ref.[26]; Copyright (2011) Society of Rheology)

    Figure 7.  A simple schematic showing the geometry of the solid rod and the disposable platens (Reprinted with permission from Ref.[29]; Copyright (2008) American Institute of Physics).

    Figure 8.  Vector diagram of torques, including acceleration torque Ta, total or electrical torque T0, and sample torque Ts, where $ \delta $ and $ \alpha $ are phase angle of T0 and Ts, respectively. The sample torque can be decomposed into viscous part Tv and elastic part Te (Reprinted with permission from Ref.[31]; Copyright (2016) Society of Rheology).

    Figure 9.  Frequency sweep measurement on the S4 oil sample with viscosity of 4 mPa·s (CP60-0.5 geometry). In addition to the complex viscosity, the measured total torque T0 and the sample torque Ts obtained after the inertia correction are plotted against angular frequency $\omega $. Arrows point to data points at 25 rad·s−1 (see text), above which the inertia correction fails. (Reprinted with permission from Ref.[31]; Copyright (2016) Society of Rheology)

    Figure 10.  Phase angle (circles) and storage G' (triangles) and loss modulus G" (squares) for the S4 oil measured in SMT mode with three cone angles, 0.5° (red), 1° (green), 2° (blue). The arrow indicates the direction of increasing the cone angle. (Reprinted with permission from Ref.[31]; Copyright (2016) Society of Rheology)

    Figure 11.  Steady shear flow measurements of H2O using cone-and-plate with diameter of 50 mm, the scattered plots in the blue regime are obtained from torque below the low-torque limit, the thickening behavior in the red regime is due to secondary flow effect.

    Figure 12.  (a) Contact line and interface angle: ideal versus non-ideal cases. In the non-ideal case, asymmetries are exaggerated compared to typical loading and can also occur as a result of overfilling; (b) Contact line in z=0 plane represented by an arbitrary parametric curve, $ \underline r $(s). (Reprinted with permission from Ref.[44]; Copyright (2013) Society of Rheology).

    Figure 13.  Evaporation-induced contact line migration, which causes surface tension torque. The geometry is parallel plate (diameter 40 mm) with constant velocity $ {\Omega } $=0.01 rad·s−1. Inset images (views from below) illustrate the contact lines of the overfilled and underfilled cases (Reprinted with permission from Ref.[44]; Copyright (2013) Society of Rheology).

    Figure 14.  Steady shear flow with different surface tension (water and n-Decane) using the concentric double gap (DG) geometry (Reprinted with permission from Ref.[44]; Copyright (2013) Society of Rheology)

    Figure 15.  (a) Increase of apparent viscosity of surfactant-free BSA solutions during the protein aggregation. (b) Increase of viscosity with time, owing to the protein aggregation in the mAb solutions even after introduction of the surfactant. (Reprinted with permission from Ref.[47]; Copyright (2014) The Royal Society of Chemistry)

    Figure 16.  The storage and loss moduli as functions of the angular frequency for a PDMS silicone oil with and without bubbles (Reprinted with permission from Ref.[48]; Copyright (2013) Spring)

    Figure 17.  The storage and loss moduli as functions of the angular frequency for PTMO-Li in dried and undried states. (Reprinted with permission from Ref.[49]; Copyright (2017) Society of Rheology)

    Figure 18.  Thermal instability of sample mLLDPE F18F. The sample without stabilizer exceeds the ±5% criterion after 4300 s owing to the crosslinking, while the sample with stabilizer stays within this criterion for 8.24×105 s (≈9.5 days). (Reprinted with permission from Ref.[50]; Copyright (2014) Springer).

    Figure 19.  Buildup of modulus in disentangled polymer melts with time of ultra-high-molecular-weight polyethylene. The top scheme shows the mechanism and the bottom figure shows the measured storage modulus G'(t) against time (symbols), where G'(t) has been normalized by the equilibrium plateau modulus GN0. Curves are the predictions based on tube theory. (Reprinted with permission from Ref.[51]; Copyright (2019) American Chemical Society)

  • 加载中
图(19)
计量
  • PDF下载量:  23
  • 文章访问数:  2921
  • HTML全文浏览量:  1668
  • 引证文献数: 0
文章相关
  • 通讯作者:  陈全, qchen@ciac.ac.cn
  • 收稿日期:  2020-10-14
  • 修稿日期:  2020-12-03
  • 刊出日期:  2021-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计