
Citation: Shuang Liu, Xiao Cao, Jia-qi Zhang, Ying-chun Han, Xin-yue Zhao and Quan Chen. Toward Correct Measurements of Shear Rheometry[J]. Acta Polymerica Sinica, 2021, 52(4): 406-422. doi: 10.11777/j.issn1000-3304.2020.20230

流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
English
Toward Correct Measurements of Shear Rheometry
-
Key words:
- Rheology /
- Shear flow field /
- Shear rheology measurement
-
-
[1]
Tadmor Z, Gogos C G. Principles of Polymer Processing. 2nd ed. Hoboken, New Jersey: John Wiley & Sons, 2013
-
[2]
Ptaszek P. Large Amplitude Oscillatory Shear (LAOS) measurement and fourier-transform rheology: application to food. In: Ahmed J, Ptaszek P, Basu S, eds. Advances in Food Rheology and Its Applications. London: Woodhead Publishing, 2017. 87−123
-
[3]
Kaneda I. Rheology Control Agents for Cosmetics. Rheology of Biological Soft Matter. Tokyo: Springer, 2017, 295−321
-
[4]
Eley R R. J Coat Technol Res, 2019, 16(2): 263−305 doi: 10.1007/s11998-019-00187-5
-
[5]
Ahmed J, Ptaszek P, Basu S. Advances in Food Rheology and Its Applications. London: Woodhead Publishing, 2016
-
[6]
Zhang Z, Liu C, Cao X, Gao L, Chen Q. Macromolecules, 2016, 49(23): 9192−9202 doi: 10.1021/acs.macromol.6b02017
-
[7]
Chen Q, Tudryn G J, Colby R H. J Rheol, 2013, 57(5): 1441−1462 doi: 10.1122/1.4818868
-
[8]
Liu S, Wu S, Chen Q. ACS Macro Lett, 2020, 9: 917−923 doi: 10.1021/acsmacrolett.0c00256
-
[9]
Larson R G. The Structure and Rheology of Complex Fluids. New York: Oxford University Press, 1999
-
[10]
Mihai M, Huneault M A, Favis B D. Polym Eng Sci, 2010, 50(3): 629−642 doi: 10.1002/pen.21561
-
[11]
Ariawan A B, Hatzikiriakos S G, Goyal S K, Hay H. Adv Polym Technol: J Polym Process Inst, 2001, 20(1): 1−13
-
[12]
Lundahl M J, Berta M, Ago M, Stading M, Rojas O J. Eur Polym J, 2018, 109: 367−378 doi: 10.1016/j.eurpolymj.2018.10.006
-
[13]
Li B, Yu W, Cao X, Chen Q. J Rheol, 2020, 64(1): 177−190 doi: 10.1122/1.5134532
-
[14]
Watanabe H, Matsumiya Y, Chen Q, Yu W. Rheological characterization of polymeric liquids. In: Matyjaszewski K, Möller M, eds. Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier, 2012. 683−722
-
[15]
Marín J M R, Huusom J K, Alvarez N J, Huang Q, Rasmussen H K, Bach A, Skov A L, Hassager O. J Non-Newton Fluid, 2013, 194: 14−22 doi: 10.1016/j.jnnfm.2012.10.007
-
[16]
Watanabe H, Matsumiya Y, Inoue T. Macromolecules, 2002, 35(6): 2339−2357 doi: 10.1021/ma011782z
-
[17]
Yoshida H, Adachi K, Watanabe H, Kotaka T. Polym J, 1989, 21(11): 863−872 doi: 10.1295/polymj.21.863
-
[18]
Trouton F T. Proc R Soc London, Ser A, 1906, 77(519): 426−440 doi: 10.1098/rspa.1906.0038
-
[19]
Liu C, Zhang J, Zhang Z, Huang S, Chen Q, Colby R H. Macromolecules, 2020, 53(8): 3071−3081 doi: 10.1021/acs.macromol.9b02431
-
[20]
Zhang J, Liu C, Zhao X, Zhang Z, Chen Q. Soft Matter, 2020, 16(21): 4955−4960 doi: 10.1039/D0SM00572J
-
[21]
Buscall R, McGowan J I, Morton-Jones A J. J Rheol, 1993, 37(4): 621−641 doi: 10.1122/1.550387
-
[22]
Buscall R. J Rheol, 2010, 54(6): 1177−1183 doi: 10.1122/1.3495981
-
[23]
Ballesta P, Petekidis G, Isa L, Poon W, Besseling R. J Rheol, 2012, 56(5): 1005−1037 doi: 10.1122/1.4719775
-
[24]
Magda J, Larson R. J Non-Newton Fluid, 1988, 30(1): 1−19 doi: 10.1016/0377-0257(88)80014-4
-
[25]
Costanzo S, Huang Q, Ianniruberto G, Marrucci G, Hassager O, Vlassopoulos D. Macromolecules, 2016, 49(10): 3925−3935 doi: 10.1021/acs.macromol.6b00409
-
[26]
Liu C Y, Yao M, Garritano R G, Franck A J, Bailly C. Rheol Acta, 2011, 50(5−6): 537 doi: 10.1007/s00397-011-0560-3
-
[27]
Pogodina N, Nowak M, Läuger J, Klein C, Wilhelm M, Friedrich C. J Rheol, 2011, 55(2): 241−256 doi: 10.1122/1.3528651
-
[28]
Gottlieb M, Macosko C. Rheol Acta, 1982, 21(1): 90−94 doi: 10.1007/BF01520709
-
[29]
Hutcheson S, McKenna G. J Chem Phys, 2008, 129(7): 074502 doi: 10.1063/1.2965528
-
[30]
Krieger I M. J Rheol, 1990, 34(4): 471−483 doi: 10.1122/1.550138
-
[31]
Läuger J, Stettin H. J Rheol, 2016, 60(3): 393−406 doi: 10.1122/1.4944512
-
[32]
Ewoldt R H, Johnston M T, Caretta L M. Experimental challenges of shear rheology: how to avoid bad data. Complex Fluids In Biological Systems. In: Spagnolie S E, ed. Complex Fluids in Biological Systems. New York: Springer, 2015. 207−241
-
[33]
Yosick J A, Giacomin J A, Stewart W E, Ding F. Rheol Acta, 1998, 37(4): 365−373 doi: 10.1007/s003970050123
-
[34]
Schrag J L. Transactions of the Society of Rheology, 1977, 21(3): 399−413 doi: 10.1122/1.549445
-
[35]
Shaqfeh E S. Annu Rev Fluid Mech, 1996, 28(1): 129−185 doi: 10.1146/annurev.fl.28.010196.001021
-
[36]
McKinley G H, Pakdel P, Öztekin A. J Non-Newton Fluid, 1996, 67: 19−47 doi: 10.1016/S0377-0257(96)01453-X
-
[37]
Pakdel P, McKinley G H. Phys Rev Lett, 1996, 77(12): 2459 doi: 10.1103/PhysRevLett.77.2459
-
[38]
Chandrasekhar S. Hydromagnets and Hydrodynamics Stability. New York: Dover Publishing, 1981
-
[39]
Larson R G. Rheol Acta, 1992, 31(3): 213−263 doi: 10.1007/BF00366504
-
[40]
Taylor G I. Philos Trans R Soc London, Ser A, 1923, 223(605-615): 289−343 doi: 10.1098/rsta.1923.0008
-
[41]
Turian R M. Ind Eng Chem Fundam, 1972, 11(3): 361−368 doi: 10.1021/i160043a014
-
[42]
Andablo-Reyes E, Vicente J d, Hidalgo-Alvarez R. J Rheol, 2011, 55(5): 981−986 doi: 10.1122/1.3606633
-
[43]
Griffiths D, Walters K. J Fluid Mech, 1970, 42(2): 379−399 doi: 10.1017/S0022112070001337
-
[44]
Johnston M T, Ewoldt R H. J Rheol, 2013, 57(6): 1515−1532 doi: 10.1122/1.4819914
-
[45]
Shipman R W, Denn M M, Keunings R. Ind Eng Chem Res, 1991, 30(5): 918−922 doi: 10.1021/ie00053a014
-
[46]
Sharma V, Jaishankar A, Wang Y C, McKinley G H. Soft Matter, 2011, 7(11): 5150−5160 doi: 10.1039/c0sm01312a
-
[47]
Castellanos M M, Pathak J A, Colby R H. Soft Matter, 2014, 10(1): 122−131 doi: 10.1039/C3SM51994E
-
[48]
Wolff F, Münstedt H. Rheol Acta, 2013, 52(4): 287−289 doi: 10.1007/s00397-013-0687-5
-
[49]
Shabbir A, Huang Q, Baeza G P, Vlassopoulos D, Chen Q, Colby R H, Alvarez N J, Hassager O. J Rheol, 2017, 61(6): 1279−1289 doi: 10.1122/1.4998158
-
[50]
Stadler F J. Korea-Aust Rheol J, 2014, 26(3): 277−291 doi: 10.1007/s13367-014-0032-2
-
[51]
Hawke L G D, Romano D, Rastogi S. Macromolecules, 2019, 52(22): 8849−8866 doi: 10.1021/acs.macromol.9b01152
-
[52]
Wang X, Tao F, Sun P, Zhou D, Wang Z, Gu Q, Hu J, Xue G. Macromolecules, 2007, 40(14): 4736−4739 doi: 10.1021/ma0700025
-
[53]
Teng C, Gao Y, Wang X, Jiang W, Zhang C, Wang R, Zhou D, Xue G. Macromolecules, 2012, 45(16): 6648−6651 doi: 10.1021/ma300885w
-
[54]
Lippits D R, Rastogi S, Talebi S, Bailly C. Macromolecules, 2006, 39(26): 8882−8885 doi: 10.1021/ma062284z
-
[55]
Stadler F J, Still T, Fytas G, Bailly C. Macromolecules, 2010, 43(18): 7771−7778 doi: 10.1021/ma101028b
-
[56]
Ling G H, Wang Y, Weiss R. Macromolecules, 2012, 45(1): 481−490 doi: 10.1021/ma201854w
-
[57]
Scherz L F, Costanzo S, Huang Q, Schlüter A D, Vlassopoulos D. Macromolecules, 2017, 50(13): 5176−5187 doi: 10.1021/acs.macromol.7b00747
-
[1]
-
Figure 1. Illustration of two representative modes of deformation: the simple shear for which the direction of velocity gradient is perpendicular to that of velocity, and the uniaxial elongation for which the direction of velocity gradient is parallel to that of velocity. (Reprinted with permission from Ref.[14]; Copyright (2012) Elsevier)
Figure 3. The different responses of Newtonian fluid, Hookean solid, and viscoelastic materials to the imposed steady flow (stress growth, transient or steady mode that depends on the focus), step strain (stress relaxation, transient mode), step stress (creep and recovery, transient mode) and small amplitude oscillatory shear (SAOS, dynamic mode).
Figure 5. Schematic view of the CPP fixture. Green: cone; red: sample; blue: outer partition (section); yellow: translation stages (section); orange: bridge (section); grey: inner tool (Drawing not in scale). The sample disk should have size sufficiently larger than the inner plate. (Reprinted with permission from Ref.[25]; Copyright (2016) American Chemical Society)
Figure 6. (a) The effect of geometry compliance on linear viscoelasticity; (b) Comparison of commanded strain (as 100%), measured strain (with force rebalance torque transducers (FRT) compliance correction), and corrected strain (with tool correction) obtained for a polyisobutylene sample at −20 °C using 25 mm parallel plates (Reprinted with permission from Ref.[26]; Copyright (2011) Society of Rheology)
Figure 7. A simple schematic showing the geometry of the solid rod and the disposable platens (Reprinted with permission from Ref.[29]; Copyright (2008) American Institute of Physics).
Figure 8. Vector diagram of torques, including acceleration torque Ta, total or electrical torque T0, and sample torque Ts, where
$ \delta $ and$ \alpha $ are phase angle of T0 and Ts, respectively. The sample torque can be decomposed into viscous part Tv and elastic part Te (Reprinted with permission from Ref.[31]; Copyright (2016) Society of Rheology).Figure 9. Frequency sweep measurement on the S4 oil sample with viscosity of 4 mPa·s (CP60-0.5 geometry). In addition to the complex viscosity, the measured total torque T0 and the sample torque Ts obtained after the inertia correction are plotted against angular frequency
$\omega $ . Arrows point to data points at 25 rad·s−1 (see text), above which the inertia correction fails. (Reprinted with permission from Ref.[31]; Copyright (2016) Society of Rheology)Figure 10. Phase angle (circles) and storage G' (triangles) and loss modulus G" (squares) for the S4 oil measured in SMT mode with three cone angles, 0.5° (red), 1° (green), 2° (blue). The arrow indicates the direction of increasing the cone angle. (Reprinted with permission from Ref.[31]; Copyright (2016) Society of Rheology)
Figure 12. (a) Contact line and interface angle: ideal versus non-ideal cases. In the non-ideal case, asymmetries are exaggerated compared to typical loading and can also occur as a result of overfilling; (b) Contact line in z=0 plane represented by an arbitrary parametric curve,
$ \underline r $ (s). (Reprinted with permission from Ref.[44]; Copyright (2013) Society of Rheology).Figure 13. Evaporation-induced contact line migration, which causes surface tension torque. The geometry is parallel plate (diameter 40 mm) with constant velocity
$ {\Omega } $ =0.01 rad·s−1. Inset images (views from below) illustrate the contact lines of the overfilled and underfilled cases (Reprinted with permission from Ref.[44]; Copyright (2013) Society of Rheology).Figure 14. Steady shear flow with different surface tension (water and n-Decane) using the concentric double gap (DG) geometry (Reprinted with permission from Ref.[44]; Copyright (2013) Society of Rheology)
Figure 15. (a) Increase of apparent viscosity of surfactant-free BSA solutions during the protein aggregation. (b) Increase of viscosity with time, owing to the protein aggregation in the mAb solutions even after introduction of the surfactant. (Reprinted with permission from Ref.[47]; Copyright (2014) The Royal Society of Chemistry)
Figure 16. The storage and loss moduli as functions of the angular frequency for a PDMS silicone oil with and without bubbles (Reprinted with permission from Ref.[48]; Copyright (2013) Spring)
Figure 17. The storage and loss moduli as functions of the angular frequency for PTMO-Li in dried and undried states. (Reprinted with permission from Ref.[49]; Copyright (2017) Society of Rheology)
Figure 18. Thermal instability of sample mLLDPE F18F. The sample without stabilizer exceeds the ±5% criterion after 4300 s owing to the crosslinking, while the sample with stabilizer stays within this criterion for 8.24×105 s (≈9.5 days). (Reprinted with permission from Ref.[50]; Copyright (2014) Springer).
Figure 19. Buildup of modulus in disentangled polymer melts with time of ultra-high-molecular-weight polyethylene. The top scheme shows the mechanism and the bottom figure shows the measured storage modulus G'(t) against time (symbols), where G'(t) has been normalized by the equilibrium plateau modulus GN0. Curves are the predictions based on tube theory. (Reprinted with permission from Ref.[51]; Copyright (2019) American Chemical Society)
-