
Citation: Yong-xuan Chen, Dong-shan Zhou and Wen-bing Hu. Progress of Differential Scanning Calorimetry and Its Application in Polymer Characterization[J]. Acta Polymerica Sinica, 2021, 52(4): 423-444. doi: 10.11777/j.issn1000-3304.2020.20234

示差扫描量热法进展及其在高分子表征中的应用
-
关键词:
- 高分子表征 /
- 示差扫描量热法 /
- 温度调制示差扫描量热法 /
- 闪速示差扫描量热法
English
Progress of Differential Scanning Calorimetry and Its Application in Polymer Characterization
-
-
[1]
Rupp R(丽贝卡·鲁普). Water, Gas, Fire and Earth-History of Element Discovery(水气火土—元素发现史话). Beijing(北京): The Commercial Press(商务印书馆), 2008.1−74
-
[2]
ICTAC Nomenclature Committee. Draft-03b. doc 07.03. Recommendations for Names and Definitions in Thermal Analysis and Calorimetry.
-
[3]
ASTM E473-07b, Standard Terminology Relating to Thermal Analysis and Rheology, ASTM International, West Conshohocken, PA, 2007, http://www.astm.org
-
[4]
ASTM E2161-01, Standard Terminology Relating to Performance Validation in Thermal Analysis, ASTM International, West Conshohocken, PA, 2001, http://www.astm.org
-
[5]
Le Chatelier H. Z Phys Chem, 1887, 1: 296
-
[6]
Le Chatelier H. Bull Soc Franc Mineral Cryst, 1887, 10: 204−211
-
[7]
Roberts-Austen W C. Proc Inst Mech Eng, 1899, 1: 35−102
-
[8]
Boersma S L. J Amer Ceram Soc, 1955, 38: 281−284 doi: 10.1111/j.1151-2916.1955.tb14945.x
-
[9]
O’Neill M J. Anal Chem, 1964, 36: 1238−1245 doi: 10.1021/ac60213a020
-
[10]
Watson E S, O’Neill M J, Justin J, Brenner N. Anal Chem, 1964, 36: 1233−1237 doi: 10.1021/ac60213a019
-
[11]
Wunderlich B. Thermal Analysis of Polymeric Materials[M]. Springer: Berlin, 2005. 329−355
-
[12]
Liu Zhenhai(刘振海), Lu Liming(陆立明), Tan Yuanwang(唐远望). A Brief Tutorial on Thermal Analysis(热分析简明教程). Beijing(北京): Science Press(科学出版社), 2012. 83−104
-
[13]
Ding Yanwei(丁延伟). Fundamentals of Thermal Analysis(热分析基础). Hefei(合肥): University of Science and technology of China Press(中国科学技术大学出版社), 2020. 188−231
-
[14]
Lu Liming(陆立明). Basics of Thermal Analysis Application(热分析应用基础). Shanghai(上海): Donghua University Press(东华大学出版社), 2010. 34−43
-
[15]
ASTM E1269-11(2018), Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2018, http://www.astm.org
-
[16]
Gaur U, Wunderlich B. Advanced thermal analysis aystem (ATHAS) polymer heat capacity data bank. In: Computer Applications in Applied Polymer Science. New York: American Chemical Society, 1982. 355−366
-
[17]
ASTM E1356-08(2014), Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2014, http://www.astm.org
-
[18]
Höne G, Hemminger W F, Flammersheim H J. Differential Scanning Calorimetry. Berlin: Springer, 2003. 126−140
-
[19]
Lau S F, Suzuki H, Wunderlich B. J Polymer Sci: Polymer Phys Ed, 1984, 22: 379−405 doi: 10.1002/pol.1984.180220305
-
[20]
Huang M M, Dong X, Wang L L, Zheng L C, Liu G M, Gao X, Li C C, Müller A J, Wang D J. Macromolecules, 2018, 51(3): 1100−1109 doi: 10.1021/acs.macromol.7b01779
-
[21]
Wang Z F, Dong X, Cavallo D, Müller A J, Wang D J. Macromolecules, 2018, 51(15): 6037−6046 doi: 10.1021/acs.macromol.8b01313
-
[22]
Wang Z F, Dong X, Liu G M, Xing Q, Cavallo D, Jiang Q H, Müller A J, Wang D J. Polymer, 2018, 138: 396−406 doi: 10.1016/j.polymer.2018.01.078
-
[23]
Dong Siyuan(董思远), Zhu Ping(朱平), Liu Jiguang(刘继广), Wang Dujing(王笃金), Dong Xia(董侠). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 189−198 doi: 10.11777/j.issn1000-3304.2018.18198
-
[24]
Lu Liming(陆立明). Polymer Bulletin(高分子通报), 2009, (3): 62−74
-
[25]
Corbino O M. Physik Z, 1910, 11: 413−417
-
[26]
Corbino O M. Physik Z, 1911, 12: 292−295
-
[27]
Birge N O, Nagel S R. Phys Rev Lett, 1985, 54: 2674−2677 doi: 10.1103/PhysRevLett.54.2674
-
[28]
Kraftmakher Y A. Z Prikladnoj Mech Tech Fiz, 1962, 5: 176−180
-
[29]
Sullivan P, Seidel G. Ann Acad Sci Fennicae A VI, 1966, 210: 58−62
-
[30]
Gobrecht H, Hamann K, Willers G. J Phys E: Sci Instrum, 1971, 4: 21−23 doi: 10.1088/0022-3735/4/1/004
-
[31]
Gill P S, Sauerbrunn S R, Reading M. J Therm Anal, 1993, 40: 931−939 doi: 10.1007/bf02546852
-
[32]
Reading M, Elliott D, Hill V L. J Thermal Anal, 1993, 40: 949 doi: 10.1007/BF02546854
-
[33]
Reading M, Luget A, Wilson R. Thermochim Acta, 1994, 238: 295−307 doi: 10.1016/S0040-6031(94)85215-4
-
[34]
Reading M, Hourston D J. Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Applications in Polymer Characterization. Berlin: Springer, 2006. 1−80
-
[35]
Hu W B, Wunderlich B. J Therm Anal Calorim, 2001, 66: 677−697 doi: 10.1023/A:1013106118660
-
[36]
Wunderlich B. Prog Polym Sci, 2003, 28: 383−450 doi: 10.1016/S0079-6700(02)00085-0
-
[37]
Schick C, Wurm A, Mohammed A. Thermochim Acta, 2003, 396: 119−132 doi: 10.1016/S0040-6031(02)00526-9
-
[38]
Schick C. Anal Bioanal Chem, 2009, 395: 1589−1611 doi: 10.1007/s00216-009-3169-y
-
[39]
Hu W B, Albrecht T, Strobl G. Macromolecules, 1999, 32: 7548−7554 doi: 10.1021/ma9908649
-
[40]
Jiang X M, Li Z L, Wang J, Gao H H, Zhou D S, Tang Y W, Hu W B. Thermochim Acta, 2015, 603: 79−84 doi: 10.1016/j.tca.2014.04.002
-
[41]
Gaur U, Wunderlich B. J Phys Chem Ref Data, 1981, 10: 1051−1064 doi: 10.1063/1.555650
-
[42]
Boller A, Schick C, Wunderlich B. Thermochim Acta, 1995, 266: 97−111 doi: 10.1016/0040-6031(95)02552-9
-
[43]
Pyda M, Wunderlich B. Macromolecules, 2005, 38(25): 10472−10479 doi: 10.1021/ma051611k
-
[44]
Schick C, Mathot V B F. Fast Scanning Calorimetry[M]. Springer: Switzerland, 2016. V−VII
-
[45]
Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1179−1195 doi: 10.11777/j.issn1000-3304.2016.16058
-
[46]
Denlinger D W, Abarra E N, Allen K, Rooney P W, Messer M T, Watson S K, Hellman F. Rev Sci Instrum, 1994, 65(4): 946−958 doi: 10.1063/1.1144925
-
[47]
Allen L H, Ramanath G, Lai S L, Ma Z, Lee S, Allman D D J, Fuchs K P. Appl Phys Lett, 1994, 64(4): 417−419 doi: 10.1063/1.111116
-
[48]
Efremov M Yu, Olson E A, Zhang M, Schiettekatte F, Zhang Z S, Allen L H. Rev Sci Instrum, 2004, 75(1): 179−191 doi: 10.1063/1.1633000
-
[49]
Adamovsky S, Minakov A A, Schick C. Thermochim Acta, 2003, 403(1): 55−63 doi: 10.1016/S0040-6031(03)00182-5
-
[50]
Adamovsky S, Schick C. Thermochim Acta, 2004, 415(1-2): 1−7 doi: 10.1016/j.tca.2003.07.015
-
[51]
Yu J, Tang Z A, Zhang F T, Wei G F, Wang L D. Chin Phys Lett, 2005, 22(9): 2429−2432 doi: 10.1088/0256-307X/22/9/080
-
[52]
Jiang J, Wei L, Zhou D. Integration of Fast Scanning Calorimetry (FSC) with microstructural analysis techniques. In: Schick C, Mathot V B F, ed. Fast Scanning Calorimetry, Switzerland: Springer, 2016. 361−379
-
[53]
Chen M Z, Du M T, Jiang J, Li D W, Jiang W, Zhuravlev E, Zhou D S, Schick C, Xue G. Thermochim Acta, 2011, 526(1-2): 58−64 doi: 10.1016/j.tca.2011.08.020
-
[54]
Jiang J, Zhuravlev E, Huang Z, Wei L, Xu Q, Shan M, Xue G, Zhou D, Schick C, Jiang W. Soft Matter, 2013, 9(5): 1488−1491 doi: 10.1039/C2SM27012A
-
[55]
Wei L, Jiang J, Shan M, Chen W, Deng Y, Xue G, Zhou D. Rev Sci Instrum, 2014, 85(7): 074901−074907 doi: 10.1063/1.4889882
-
[56]
van Herwaardena S. Procedia Eng, 2010, 5: 464−467 doi: 10.1016/j.proeng.2010.09.147
-
[57]
Schick C, Mathot V B F. Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry. Switzerland: Springer, 2016. 3−299
-
[58]
Wang J, Li Z L, Perez R A, Müller A J, Zhang B Y, Grayson S M, Hu W B. Polymer, 2015, 63: 34−40 doi: 10.1016/j.polymer.2015.02.039
-
[59]
Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C. Polymer, 2011, 52: 1983−1997 doi: 10.1016/j.polymer.2011.03.013
-
[60]
Kalapat D, Tang Q Y, Zhang X H, Hu W B. J Therm Anal Calorim, 2017, 128: 1859−1866 doi: 10.1007/s10973-017-6095-9
-
[61]
Santis F D, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2006, 39: 2562−2567 doi: 10.1021/ma052525n
-
[62]
Santis F D, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2007, 40: 9026−9031 doi: 10.1021/ma071491b
-
[63]
Stolte I, Androsch R, Di Lorenzo M L, Schick C. J Phys Chem B, 2013, 117(48): 15196−15203 doi: 10.1021/jp4093404
-
[64]
Shick C, Androsch R. New insights into polymer crystallizaiton by fast scanning chip calorimetry. In: Fast Scanning Calorimetry. Switzerland: Springer, 2016. 463−537
-
[65]
He Yucheng(何裕成), Xie Kefeng(谢科锋), Wang Youhao(王优浩), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Physico-Chimica Sinica(物理化学学报), 2020, 36(6): 1905081−1905092 doi: 10.3866/PKU.WHXB201905081
-
[66]
Zhuravlev E, Schick C. Thermochim Acta, 2010, 505(1-2): 1−13 doi: 10.1016/j.tca.2010.03.019
-
[67]
Mollova A, Androsch R, Mileva D, Gahleitner M, Funari S S. Eur Polym J, 2013, 49(5): 1057−1065 doi: 10.1016/j.eurpolymj.2013.01.015
-
[68]
Iervolino E, van Herwaarden A W, van Herwaarden F G, van de Kerkhof E, van Grinsven P P W, Leenaers A C H I, Mathot V B F, Sarro P M. Thermochim Acta, 2011, 522(1-2): 53−59 doi: 10.1016/j.tca.2011.01.023
-
[69]
Cebe P, Partlow B P, Kaplan D L, Wurm A, Zhuravlev E, Schick C. Thermochim Acta, 2015, 615: 8−14 doi: 10.1016/j.tca.2015.07.009
-
[70]
Wang T, Li X H, Luo R Q, He Y C, Maeda S, Shen Q D, Hu W B. Thermochim Acta, 2020, 690: 178667−178672 doi: 10.1016/j.tca.2020.178667
-
[71]
Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 114−163
-
[72]
Hu Wenbing(胡文兵). Introduction to Polymer Physics(高分子物理导论). Beijing(北京): Science Press(科学出版社), 2011. 146−173
-
[73]
He Y C, Luo R Q, Li Z L, Lv R H, Zhou D S, Lim S, Ren X N, Gao H X, Hu W B. Macromol Chem Phys, 2018, 219: 1700385−1700390 doi: 10.1002/macp.201700385
-
[74]
Hu W B. Phys Rep, 2018, 747: 1−50 doi: 10.1016/j.physrep.2018.04.004
-
[75]
Li X H, He Y C, Dong X, Ren X N, Gao H X, Hu W B. Polymer, 2020, 189: 122165−122173 doi: 10.1016/j.polymer.2020.122165
-
[76]
Toda A, Mikosaka M, Yamada K. Polymer, 2002, 43: 1667−1679 doi: 10.1016/S0032-3861(01)00733-9
-
[77]
Toda A, Kojima I, Hikosaka M. Macromolecules, 2008, 41: 120−127 doi: 10.1021/ma702162m
-
[78]
Gao H H, Wang J, Schick C, Toda A, Zhou D S, Hu W B. Polymer, 2014, 55(16): 4307−4312 doi: 10.1016/j.polymer.2014.06.048
-
[79]
Monnier X, Napolitano S, Cangialosi D. Nat Commun, 2020, 11: 4354−4360 doi: 10.1038/s41467-020-18216-y
-
[80]
Huang Z J, Jiang J, Xue G, Zhou D S. Chinese J Polym Sci, 2019, 37: 94−100 doi: 10.1007/s10118-019-2177-4
-
[81]
Luo S C, Wei L, Jiang, J, Sha Y, Xue G, Wang X L, Zhou D S. J Polym Sci, Part B: Polym Phys, 2017, 55: 1357−1364 doi: 10.1002/polb.24378
-
[82]
Luo S C, Kui X, Xing E R, Wang X L, Xue G, Schick C, Hu W B, Zhuravlev E, Zhou D S. Macromolecules, 2018, 51(14): 5209−5218 doi: 10.1021/acs.macromol.8b00692
-
[83]
Luo S C, Wang T Y, Ocheje M U, Zhang S, Xu J, Qian Z Y, Gu X D, Xue G, Rondeau-Gagné S, Jiang J, Hu W B, Zhuravlev E, Zhou D S. Macromolecules, 2020, 53(11): 4480−4489 doi: 10.1021/acs.macromol.9b02738
-
[84]
Jiang J, Zhuravlev E, Hu W B, Schick C, Zhou D S. Chinese J Polym Sci, 2017, 35(8): 1009−1019 doi: 10.1007/s10118-017-1942-5
-
[85]
Lv R H, He Y C, Wang J P, Wang J, Hu J, Zhang J M, Hu W B. Polymer, 2019, 174: 123−129 doi: 10.1016/j.polymer.2019.04.061
-
[86]
Schawe Jürgen E K, Löffler Jörg F. Nat Commun, 2019, 10(1): 1337−1346 doi: 10.1038/s41467-018-07930-3
-
[87]
Monnier X, Cangialosi D. Phys Rev Lett, 2018, 121: 137801−137806 doi: 10.1103/PhysRevLett.121.137801
-
[88]
Zhang Jianjun(张建军). Acta Physico-Chimica Sinica(物理化学学报), 2020, 36(6): 1907048−1907049 doi: 10.3866/PKU.WHXB201907048
-
[89]
He Y C, Li X H, Ge L, Qian Q Y, Hu W B. Thermochim Acta, 2019, 677: 21−25 doi: 10.1016/j.tca.2019.01.003
-
[90]
Xie K F, He Y C, Cai J, Hu W B. Thermochim Acta, 2020, 683: 178445−178449 doi: 10.1016/j.tca.2019.178445
-
[91]
Jiang X M, Li Z L, Gao H H. Combining fast-scan chip calorimetry with molecular simulation to investigate polymer crystal melting. In: Schick C, Mathot V B F, ed. Fast Scanning Calorimetry. Springer: Switzerland, 2016. 379−403
-
[1]
-
Figure 1. Illustration of heat-flux DSC (Mettler-Toledo heat-flux DSC) with the heating rate controlled through the furnace temperature. There are two sets of thermocouples measuring the heat flow between the furnace and the pan for sample and reference and two central terminals bringing the average T signal from all the thermocouples out to the computer.
Figure 3. Illustration of the calibration of temperature and heat-flow rate with the standard material Indium for DSC measurement. The curve is characterized by its baseline and the endothermic process with some characteristic temperatures including the beginning of melting, Tb, the extrapolated onset of melting, Tm, the peak temperature, Tp, and the end of melting where the baseline is finally recovered, Te. Generally, Tm is the most reproducible point as an accurate measure of the equilibrium temperature which are used for the temperature calibration. The peak area below the baseline can be compared with the expected fusion heat of standard materials for the calibration of the heat flow rate.
Figure 4. Heat flow curves of standard sapphire and unknown specimens where Ds (mW) is the vertical displacement between the baseline and the specimen DSC thermal curves at a given temperature while Dst (mW) is vertical displacement between the baseline and the sapphire DSC thermal curves at a given temperature.
Figure 5. The heat-flow rate (the upper curve in the left axis) and its derivative (the lower curve in the right axis) curves in the glass transition region with some characteristic temperatures including the beginning of glass transition Tb, the extrapolated onset temperature Tb1, the midpoint temperature Tg, the inflection temperature Ti, the extrapolated end temperature Te1 and the temperature of return-to-baseline Te as listed. The glass transition is determined by Tg (°C)—the point on the thermal curve corresponding to the half of the heat flow difference between the extrapolated onset and extrapolated end.
Figure 6. Typical temperature profile of sinusoidal TMDSC (blue and solid curve) and its underlying heating rate curve with
$ \;{\beta }_{0} $ of 1 K·min−1 (red and dashed line). The amplitude of modulation AT is 0.5 K, the period of modulation$ {t}_{{\rm{p}}} $ is 60 s. (Reprinted with permission from Ref.[24]; Copyright (2009) Polymer Bulletin)Figure 7. The heat-flow curve measured by the sinusoidal temperature-modulated DSC (Reprinted with permission from Ref.[24]; Copyright (2009) Polymer Bulletin)
Figure 8. The total heat-flow curve of a sinusoidal TMDSC curve. (Reprinted with permission from Ref.[24]; Copyright (2009) Polymer Bulletin)
Figure 9. Typical temperature profile for sawtooth TMDSC (solid line) and its deconvoluted underlying heating rate
$ \;{\beta }_{0} $ of 1 K·min−1 and the reversing rate of temperature change of ±3 K·min−1 (dashed lines). T1 and T2 indicate the beginnings and ends of the cycles, respectively. (Reprinted with permission from Ref.[35]; Copyright (2014) Springer Nature)Figure 10. Illustration of the linear thermal response (solid lines) for the temperature profile of Fig 11. The lightly dotted boxes and the heavily dotted boxes separately indicate the underlying and the reversing responses. The heavy line represents the heat flow rate
$\textit{ϕ} \left(t\right)$ . The pseudo-isothermal level (Ps), the zero level (0) and the value of upper and lower limits of the heat flow rate${\textit{ϕ} }_{{\rm{h}}}$ and${\textit{ϕ} }_{\mathrm{c}}$ are marked, respectively. (Reprinted with permission from Ref.[35]; Copyright (2014) Springer Nature)Figure 12. The heat capacity curves of poly(ethylene terephthalate) (PET) measured by sawtooth TMDSC with temperature profile of Fig. 11. The heat flow data is analyzed with the standard DSC method: reversing heat capacity from Eq. (26), total heat capacity from Eq. (25), non-reversing heat capacity from the difference between total and reversing heat capacity, and imbalance of heat capacity from Eq. (28). Also listed are the ATHAS data bank data for the heat capacity of amorphous PET. (Reprinted with permission from Ref.[35]; Copyright (2014) Springer Nature)
Figure 13. The apparent heat capacity curves of PET during the heating process after crystallized by cooling from the melt to 44% crystallinity. The standard DSC curve and TMDSC curve are separately with intermediate and heavy thickness. Also plotted are the data-bank information (thin line) and the computed heat capacity for the sample of 44% crystalline PET (broken line). (Reprinted with permission from Ref.[36]; Copyright (2014) Elsevier)
Figure 14. Illustration of reversible premelting on the fold-end surface of polymer lamellar crystals. There exists a local force balance between the recovery tendency of the stretched loops and the thickening tendency of the lamellar crystals (see arrows). (Reprinted with permission from Ref.[39]; Copyright (2014) American Chemical Society).
Figure 15. (a) The heat-flow rate curve (the black curve in the right axis) of the doped iPP as a response to the temperature-modulation program (the red curve in the left axis) with the frequency 12.5 Hz, the amplitude ±1 K and the baseline annealing temperature 398 K. (b) Frequency dependences of specific reversing heat capacities of raw and doped iPP samples measured by sawtooth TMDSC. The dashed line represents the standard specific vibrational heat capacity for iPP melt at 398 K that is cited from the literature [41]. (Reprinted with permission from Ref.[40]; Copyright (2014) Elsevier)
Figure 16. TMDSC measurement with the underlying heating rate 2 K·min−1, modulation period 80.5 s, and modulation amplitude 1.0 K for PS after annealing for 240 min at 353.15 K in order to separate the reversing and non-reversing contributions to the apparent heat capacity in the glass transition temperature region. Left figure: Modulated heat flow, the sliding averages, and the evaluated reversing and non-reversing heat capacities; Right figure: Expanded scale drawings of the three sliding averages. (Reprinted with permission from Ref.[42]; Copyright (2014) Elsevier)
Figure 17. Specific reversing heat capacity curves of PLA-H cooled from 373 K to 283 K in TMDSC at different modulation frequencies. The underlying cooling rate is 0.1 K·min−1, and the maximum cooling rate ATω remains at π/100 with the modulation amplitude ranging from 0.05 K to 0.5 K and the modulation period ranging from 10 s to 100 s resulting in a wide range of modulation frequency from 0.01 Hz to 100 Hz. (Reprinted with permission from Ref.[43]; Copyright (2014) American Chemical Society)
Figure 19. Apparent heat capacity curves of C66 samples obtained on heating at 3000 K·s−1 after cooled at −10 K·s−1 from a stay of 0.2 s at different erasing temperatures ranging from 180 ℃ to 210 ℃ (Reprinted with permission from Ref.[70]; Copyright (2014) Elsevier)
Figure 20. Apparent heat capacity curves of V30G sample obtained on cooling at various rates as labeled (Reprinted with permission from Ref.[60]; Copyright (2014) Springer Nature).
Figure 21. Apparent heat capacity curves of V30G sample obtained on heating at various rates as labeled (Reprinted with permission from Ref.[60]; Copyright (2014) Springer Nature)
Figure 22. Comparison of temperature dependence of crystallization half-times of PA and PK during isothermal crystallization process at various crystallization temperatures (Reprinted with permission from Ref.[73]; Copyright (2014) John Wiley and Sons)
Figure 23. Summary of temperature dependence of crystallization half-times of PA46, PA66, PA610, PA612, PA1012 and PA12 during isothermal crystallization processes at various temperatures (Reprinted with permission from Ref.[75]; Copyright (2014) Elsevier)
Figure 24. (a, b) FSC measurement of power law relationships between apparent superheating Tm,onset−Tc and heating rates h for α-crystals and β-crystals of iPP prepared at three crystallization temperatures Tc as labeled. (c) Mote Carlo simulations of power law relationship between apparent superheating Tm,onset−Tc and heating rates h for lamellar iPP crystals with different chain mobility characterized by Ef/Ec and different crystallization temperatures Tc as labeled (Reprinted with permission from Ref.[78]; Copyright (2014) Elsevier)
Figure 25. (a) Heat flow curves of PLLA crystals after annealing at 152 °C for various periods from 0 s to 600 s; (b) AFM height image of nascent PLLA crystals; (c) AFM height image of PLLA after annealed at 152 °C for 1000 s (Reprinted with permission from Ref.[85]; Copyright (2014) Elsevier)
Figure 26. Reciprocals of the relaxation time (left axis, pentagons) and cooling rate (right axis, stars) as functions of the inverse of temperature and fictive temperature for PtBs samples at different length scales. The solid lines are VFT fits for the relationship between relaxation time (or cooling rate) and fictive temperature. The confinement-length dependence of fictive temperature at different cooling rates is presented in the inset where the dashed and solid lines are linear fits of the length-scale-dependent fictive temperature measured at high and low cooling rates, respectively. (Reprinted with permission from Ref.[87]; Copyright (2014) American Physical Society)
Figure 27. (a) Top: Illustration of two indium particles separately placed on the top of a regular-shaped sample and on the surface of the reference cell. Bottom: the photographs of the sample cell and the reference cell. (b) Temperature profile for isothermal crystallization and subsequent melting of the samples. (c) Apparent heat capacity curves of Nylon 46 at various heating rates as labeled and the exothermal peak and endothermal peak indicate separately the melting of the indium on the reference cell and on the top of sample Nylon 46. (d) Melting point differences of two indium particles at various heating rates for three Nylon samples (Reprinted with permission from Ref.[90]; Copyright (2014) Elsevier)
Figure 28. Illustration of time scales of fast-scan chip-calorimetry measurement and Monte Carlo simulation towards the identical time window of polymer crystallization and melting (Reprinted with permission from Ref.[91]; Copyright (2014) Springer Nature)
-