ISSN 1000-3304CN 11-1857/O6

示差扫描量热法进展及其在高分子表征中的应用

陈咏萱 周东山 胡文兵

引用本文: 陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用[J]. 高分子学报, 2021, 52(4): 423-444. doi: 10.11777/j.issn1000-3304.2020.20234 shu
Citation:  Yong-xuan Chen, Dong-shan Zhou and Wen-bing Hu. Progress of Differential Scanning Calorimetry and Its Application in Polymer Characterization[J]. Acta Polymerica Sinica, 2021, 52(4): 423-444. doi: 10.11777/j.issn1000-3304.2020.20234 shu

示差扫描量热法进展及其在高分子表征中的应用

    作者简介: 胡文兵,男,1966年生. 南京大学化学化工学院高分子系教授、博士生导师. 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系. 分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究. 2004年至今,在南京大学任教. 2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APS Fellow). 主要研究方向为采用蒙特卡洛分子模拟和Flash DSC研究高分子结晶机理及材料热导率表征;
    通讯作者: 胡文兵, E-mail: wbhu@nju.edu.cn
摘要: 示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点. 近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究. 温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容. 闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能. 本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望. 本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.

English

    1. [1]

      Rupp R(丽贝卡·鲁普). Water, Gas, Fire and Earth-History of Element Discovery(水气火土—元素发现史话). Beijing(北京): The Commercial Press(商务印书馆), 2008.1−74

    2. [2]

      ICTAC Nomenclature Committee. Draft-03b. doc 07.03. Recommendations for Names and Definitions in Thermal Analysis and Calorimetry.

    3. [3]

      ASTM E473-07b, Standard Terminology Relating to Thermal Analysis and Rheology, ASTM International, West Conshohocken, PA, 2007, http://www.astm.org

    4. [4]

      ASTM E2161-01, Standard Terminology Relating to Performance Validation in Thermal Analysis, ASTM International, West Conshohocken, PA, 2001, http://www.astm.org

    5. [5]

      Le Chatelier H. Z Phys Chem, 1887, 1: 296

    6. [6]

      Le Chatelier H. Bull Soc Franc Mineral Cryst, 1887, 10: 204−211

    7. [7]

      Roberts-Austen W C. Proc Inst Mech Eng, 1899, 1: 35−102

    8. [8]

      Boersma S L. J Amer Ceram Soc, 1955, 38: 281−284 doi: 10.1111/j.1151-2916.1955.tb14945.x

    9. [9]

      O’Neill M J. Anal Chem, 1964, 36: 1238−1245 doi: 10.1021/ac60213a020

    10. [10]

      Watson E S, O’Neill M J, Justin J, Brenner N. Anal Chem, 1964, 36: 1233−1237 doi: 10.1021/ac60213a019

    11. [11]

      Wunderlich B. Thermal Analysis of Polymeric Materials[M]. Springer: Berlin, 2005. 329−355

    12. [12]

      Liu Zhenhai(刘振海), Lu Liming(陆立明), Tan Yuanwang(唐远望). A Brief Tutorial on Thermal Analysis(热分析简明教程). Beijing(北京): Science Press(科学出版社), 2012. 83−104

    13. [13]

      Ding Yanwei(丁延伟). Fundamentals of Thermal Analysis(热分析基础). Hefei(合肥): University of Science and technology of China Press(中国科学技术大学出版社), 2020. 188−231

    14. [14]

      Lu Liming(陆立明). Basics of Thermal Analysis Application(热分析应用基础). Shanghai(上海): Donghua University Press(东华大学出版社), 2010. 34−43

    15. [15]

      ASTM E1269-11(2018), Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2018, http://www.astm.org

    16. [16]

      Gaur U, Wunderlich B. Advanced thermal analysis aystem (ATHAS) polymer heat capacity data bank. In: Computer Applications in Applied Polymer Science. New York: American Chemical Society, 1982. 355−366

    17. [17]

      ASTM E1356-08(2014), Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA, 2014, http://www.astm.org

    18. [18]

      Höne G, Hemminger W F, Flammersheim H J. Differential Scanning Calorimetry. Berlin: Springer, 2003. 126−140

    19. [19]

      Lau S F, Suzuki H, Wunderlich B. J Polymer Sci: Polymer Phys Ed, 1984, 22: 379−405 doi: 10.1002/pol.1984.180220305

    20. [20]

      Huang M M, Dong X, Wang L L, Zheng L C, Liu G M, Gao X, Li C C, Müller A J, Wang D J. Macromolecules, 2018, 51(3): 1100−1109 doi: 10.1021/acs.macromol.7b01779

    21. [21]

      Wang Z F, Dong X, Cavallo D, Müller A J, Wang D J. Macromolecules, 2018, 51(15): 6037−6046 doi: 10.1021/acs.macromol.8b01313

    22. [22]

      Wang Z F, Dong X, Liu G M, Xing Q, Cavallo D, Jiang Q H, Müller A J, Wang D J. Polymer, 2018, 138: 396−406 doi: 10.1016/j.polymer.2018.01.078

    23. [23]

      Dong Siyuan(董思远), Zhu Ping(朱平), Liu Jiguang(刘继广), Wang Dujing(王笃金), Dong Xia(董侠). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 189−198 doi: 10.11777/j.issn1000-3304.2018.18198

    24. [24]

      Lu Liming(陆立明). Polymer Bulletin(高分子通报), 2009, (3): 62−74

    25. [25]

      Corbino O M. Physik Z, 1910, 11: 413−417

    26. [26]

      Corbino O M. Physik Z, 1911, 12: 292−295

    27. [27]

      Birge N O, Nagel S R. Phys Rev Lett, 1985, 54: 2674−2677 doi: 10.1103/PhysRevLett.54.2674

    28. [28]

      Kraftmakher Y A. Z Prikladnoj Mech Tech Fiz, 1962, 5: 176−180

    29. [29]

      Sullivan P, Seidel G. Ann Acad Sci Fennicae A VI, 1966, 210: 58−62

    30. [30]

      Gobrecht H, Hamann K, Willers G. J Phys E: Sci Instrum, 1971, 4: 21−23 doi: 10.1088/0022-3735/4/1/004

    31. [31]

      Gill P S, Sauerbrunn S R, Reading M. J Therm Anal, 1993, 40: 931−939 doi: 10.1007/bf02546852

    32. [32]

      Reading M, Elliott D, Hill V L. J Thermal Anal, 1993, 40: 949 doi: 10.1007/BF02546854

    33. [33]

      Reading M, Luget A, Wilson R. Thermochim Acta, 1994, 238: 295−307 doi: 10.1016/S0040-6031(94)85215-4

    34. [34]

      Reading M, Hourston D J. Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Applications in Polymer Characterization. Berlin: Springer, 2006. 1−80

    35. [35]

      Hu W B, Wunderlich B. J Therm Anal Calorim, 2001, 66: 677−697 doi: 10.1023/A:1013106118660

    36. [36]

      Wunderlich B. Prog Polym Sci, 2003, 28: 383−450 doi: 10.1016/S0079-6700(02)00085-0

    37. [37]

      Schick C, Wurm A, Mohammed A. Thermochim Acta, 2003, 396: 119−132 doi: 10.1016/S0040-6031(02)00526-9

    38. [38]

      Schick C. Anal Bioanal Chem, 2009, 395: 1589−1611 doi: 10.1007/s00216-009-3169-y

    39. [39]

      Hu W B, Albrecht T, Strobl G. Macromolecules, 1999, 32: 7548−7554 doi: 10.1021/ma9908649

    40. [40]

      Jiang X M, Li Z L, Wang J, Gao H H, Zhou D S, Tang Y W, Hu W B. Thermochim Acta, 2015, 603: 79−84 doi: 10.1016/j.tca.2014.04.002

    41. [41]

      Gaur U, Wunderlich B. J Phys Chem Ref Data, 1981, 10: 1051−1064 doi: 10.1063/1.555650

    42. [42]

      Boller A, Schick C, Wunderlich B. Thermochim Acta, 1995, 266: 97−111 doi: 10.1016/0040-6031(95)02552-9

    43. [43]

      Pyda M, Wunderlich B. Macromolecules, 2005, 38(25): 10472−10479 doi: 10.1021/ma051611k

    44. [44]

      Schick C, Mathot V B F. Fast Scanning Calorimetry[M]. Springer: Switzerland, 2016. V−VII

    45. [45]

      Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1179−1195 doi: 10.11777/j.issn1000-3304.2016.16058

    46. [46]

      Denlinger D W, Abarra E N, Allen K, Rooney P W, Messer M T, Watson S K, Hellman F. Rev Sci Instrum, 1994, 65(4): 946−958 doi: 10.1063/1.1144925

    47. [47]

      Allen L H, Ramanath G, Lai S L, Ma Z, Lee S, Allman D D J, Fuchs K P. Appl Phys Lett, 1994, 64(4): 417−419 doi: 10.1063/1.111116

    48. [48]

      Efremov M Yu, Olson E A, Zhang M, Schiettekatte F, Zhang Z S, Allen L H. Rev Sci Instrum, 2004, 75(1): 179−191 doi: 10.1063/1.1633000

    49. [49]

      Adamovsky S, Minakov A A, Schick C. Thermochim Acta, 2003, 403(1): 55−63 doi: 10.1016/S0040-6031(03)00182-5

    50. [50]

      Adamovsky S, Schick C. Thermochim Acta, 2004, 415(1-2): 1−7 doi: 10.1016/j.tca.2003.07.015

    51. [51]

      Yu J, Tang Z A, Zhang F T, Wei G F, Wang L D. Chin Phys Lett, 2005, 22(9): 2429−2432 doi: 10.1088/0256-307X/22/9/080

    52. [52]

      Jiang J, Wei L, Zhou D. Integration of Fast Scanning Calorimetry (FSC) with microstructural analysis techniques. In: Schick C, Mathot V B F, ed. Fast Scanning Calorimetry, Switzerland: Springer, 2016. 361−379

    53. [53]

      Chen M Z, Du M T, Jiang J, Li D W, Jiang W, Zhuravlev E, Zhou D S, Schick C, Xue G. Thermochim Acta, 2011, 526(1-2): 58−64 doi: 10.1016/j.tca.2011.08.020

    54. [54]

      Jiang J, Zhuravlev E, Huang Z, Wei L, Xu Q, Shan M, Xue G, Zhou D, Schick C, Jiang W. Soft Matter, 2013, 9(5): 1488−1491 doi: 10.1039/C2SM27012A

    55. [55]

      Wei L, Jiang J, Shan M, Chen W, Deng Y, Xue G, Zhou D. Rev Sci Instrum, 2014, 85(7): 074901−074907 doi: 10.1063/1.4889882

    56. [56]

      van Herwaardena S. Procedia Eng, 2010, 5: 464−467 doi: 10.1016/j.proeng.2010.09.147

    57. [57]

      Schick C, Mathot V B F. Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry. Switzerland: Springer, 2016. 3−299

    58. [58]

      Wang J, Li Z L, Perez R A, Müller A J, Zhang B Y, Grayson S M, Hu W B. Polymer, 2015, 63: 34−40 doi: 10.1016/j.polymer.2015.02.039

    59. [59]

      Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C. Polymer, 2011, 52: 1983−1997 doi: 10.1016/j.polymer.2011.03.013

    60. [60]

      Kalapat D, Tang Q Y, Zhang X H, Hu W B. J Therm Anal Calorim, 2017, 128: 1859−1866 doi: 10.1007/s10973-017-6095-9

    61. [61]

      Santis F D, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2006, 39: 2562−2567 doi: 10.1021/ma052525n

    62. [62]

      Santis F D, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2007, 40: 9026−9031 doi: 10.1021/ma071491b

    63. [63]

      Stolte I, Androsch R, Di Lorenzo M L, Schick C. J Phys Chem B, 2013, 117(48): 15196−15203 doi: 10.1021/jp4093404

    64. [64]

      Shick C, Androsch R. New insights into polymer crystallizaiton by fast scanning chip calorimetry. In: Fast Scanning Calorimetry. Switzerland: Springer, 2016. 463−537

    65. [65]

      He Yucheng(何裕成), Xie Kefeng(谢科锋), Wang Youhao(王优浩), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Physico-Chimica Sinica(物理化学学报), 2020, 36(6): 1905081−1905092 doi: 10.3866/PKU.WHXB201905081

    66. [66]

      Zhuravlev E, Schick C. Thermochim Acta, 2010, 505(1-2): 1−13 doi: 10.1016/j.tca.2010.03.019

    67. [67]

      Mollova A, Androsch R, Mileva D, Gahleitner M, Funari S S. Eur Polym J, 2013, 49(5): 1057−1065 doi: 10.1016/j.eurpolymj.2013.01.015

    68. [68]

      Iervolino E, van Herwaarden A W, van Herwaarden F G, van de Kerkhof E, van Grinsven P P W, Leenaers A C H I, Mathot V B F, Sarro P M. Thermochim Acta, 2011, 522(1-2): 53−59 doi: 10.1016/j.tca.2011.01.023

    69. [69]

      Cebe P, Partlow B P, Kaplan D L, Wurm A, Zhuravlev E, Schick C. Thermochim Acta, 2015, 615: 8−14 doi: 10.1016/j.tca.2015.07.009

    70. [70]

      Wang T, Li X H, Luo R Q, He Y C, Maeda S, Shen Q D, Hu W B. Thermochim Acta, 2020, 690: 178667−178672 doi: 10.1016/j.tca.2020.178667

    71. [71]

      Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 114−163

    72. [72]

      Hu Wenbing(胡文兵). Introduction to Polymer Physics(高分子物理导论). Beijing(北京): Science Press(科学出版社), 2011. 146−173

    73. [73]

      He Y C, Luo R Q, Li Z L, Lv R H, Zhou D S, Lim S, Ren X N, Gao H X, Hu W B. Macromol Chem Phys, 2018, 219: 1700385−1700390 doi: 10.1002/macp.201700385

    74. [74]

      Hu W B. Phys Rep, 2018, 747: 1−50 doi: 10.1016/j.physrep.2018.04.004

    75. [75]

      Li X H, He Y C, Dong X, Ren X N, Gao H X, Hu W B. Polymer, 2020, 189: 122165−122173 doi: 10.1016/j.polymer.2020.122165

    76. [76]

      Toda A, Mikosaka M, Yamada K. Polymer, 2002, 43: 1667−1679 doi: 10.1016/S0032-3861(01)00733-9

    77. [77]

      Toda A, Kojima I, Hikosaka M. Macromolecules, 2008, 41: 120−127 doi: 10.1021/ma702162m

    78. [78]

      Gao H H, Wang J, Schick C, Toda A, Zhou D S, Hu W B. Polymer, 2014, 55(16): 4307−4312 doi: 10.1016/j.polymer.2014.06.048

    79. [79]

      Monnier X, Napolitano S, Cangialosi D. Nat Commun, 2020, 11: 4354−4360 doi: 10.1038/s41467-020-18216-y

    80. [80]

      Huang Z J, Jiang J, Xue G, Zhou D S. Chinese J Polym Sci, 2019, 37: 94−100 doi: 10.1007/s10118-019-2177-4

    81. [81]

      Luo S C, Wei L, Jiang, J, Sha Y, Xue G, Wang X L, Zhou D S. J Polym Sci, Part B: Polym Phys, 2017, 55: 1357−1364 doi: 10.1002/polb.24378

    82. [82]

      Luo S C, Kui X, Xing E R, Wang X L, Xue G, Schick C, Hu W B, Zhuravlev E, Zhou D S. Macromolecules, 2018, 51(14): 5209−5218 doi: 10.1021/acs.macromol.8b00692

    83. [83]

      Luo S C, Wang T Y, Ocheje M U, Zhang S, Xu J, Qian Z Y, Gu X D, Xue G, Rondeau-Gagné S, Jiang J, Hu W B, Zhuravlev E, Zhou D S. Macromolecules, 2020, 53(11): 4480−4489 doi: 10.1021/acs.macromol.9b02738

    84. [84]

      Jiang J, Zhuravlev E, Hu W B, Schick C, Zhou D S. Chinese J Polym Sci, 2017, 35(8): 1009−1019 doi: 10.1007/s10118-017-1942-5

    85. [85]

      Lv R H, He Y C, Wang J P, Wang J, Hu J, Zhang J M, Hu W B. Polymer, 2019, 174: 123−129 doi: 10.1016/j.polymer.2019.04.061

    86. [86]

      Schawe Jürgen E K, Löffler Jörg F. Nat Commun, 2019, 10(1): 1337−1346 doi: 10.1038/s41467-018-07930-3

    87. [87]

      Monnier X, Cangialosi D. Phys Rev Lett, 2018, 121: 137801−137806 doi: 10.1103/PhysRevLett.121.137801

    88. [88]

      Zhang Jianjun(张建军). Acta Physico-Chimica Sinica(物理化学学报), 2020, 36(6): 1907048−1907049 doi: 10.3866/PKU.WHXB201907048

    89. [89]

      He Y C, Li X H, Ge L, Qian Q Y, Hu W B. Thermochim Acta, 2019, 677: 21−25 doi: 10.1016/j.tca.2019.01.003

    90. [90]

      Xie K F, He Y C, Cai J, Hu W B. Thermochim Acta, 2020, 683: 178445−178449 doi: 10.1016/j.tca.2019.178445

    91. [91]

      Jiang X M, Li Z L, Gao H H. Combining fast-scan chip calorimetry with molecular simulation to investigate polymer crystal melting. In: Schick C, Mathot V B F, ed. Fast Scanning Calorimetry. Springer: Switzerland, 2016. 379−403

    1. [1]

      唐锦魁沈全敖方爱美黄伟许茂桦綦玉臣宋永贤陈东霖 . 简易示差扫描量热计的研制. 高分子学报, 1980, (5): 301-305.

    2. [2]

      史观一 . 差示扫描量热法研究全氟乙丙烯共聚物的化学组成分布. 高分子学报, 1979, (5): 298-304.

    3. [3]

      邹国享张鑫李炳健赵彩霞李锦春 . 聚乳酸/矿物填料复合材料的示差扫描量热研究. 高分子学报, 2012, (9): 952-957. doi: 10.3724/SP.J.1105.2012.11394

    4. [4]

      吕冬卢影门永锋 . 小角X射线散射技术在高分子表征中的应用. 高分子学报, 2021, 52(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20249

    5. [5]

      杨始堃杨桦吴云东陈玉君 . 溶剂蒸气对聚对苯二甲酸乙二酯作用的差示扫描量热研究. 高分子学报, 1989, (1): 1-5.

    6. [6]

      王勇李凤奎沈德言钱人元 . 非晶态聚对苯二甲酸乙二酯膜应力屈服机制的示差扫描量热研究. 高分子学报, 1996, (4): 475-479.

    7. [7]

      安立佳陈尔强崔树勋董侠傅强韩艳春何嘉松胡文兵胡祖明江明李宝会李良彬李林李卫华林嘉平吕中元门永锋沈志豪孙平川童真王笃金武培怡谢续明徐坚徐志康薛奇闫寿科杨玉良俞炜俞燕蕾张广照张军张俐娜张平文张文科赵江郑强周东山 . 中国改革开放以来的高分子物理和表征研究. 高分子学报, 2019, 50(10): 1047-1067. doi: 10.11777/j.issn1000-3304.2019.19118

    8. [8]

      余珏刘尚琪钱人元 . 高聚物热释电流的极化温度扫描法. 高分子学报, 1985, (4): 282-285.

    9. [9]

      王冰花陈金龙张彬 . 原子力显微镜在高分子表征中的应用. 高分子学报, 2021, 52(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20259

    10. [10]

      刘巍刘勇刚姬相玲 . 体积排除色谱技术在高分子表征中的应用. 高分子学报, 2021, 52(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20253

    11. [11]

      杨榕李红梅姜菁周东山 . 聚氧化乙烯受限态下等温结晶动力学的高速扫描量热研究. 高分子学报, 2018, 0(9): 1228-1235. doi: 10.11777/j.issn1000-3304.2018.18024

    12. [12]

      刘承果谢鸿峰郑云程镕时 . 示差折光和光散射双检测体积排除色谱的绝对定量化. 高分子学报, 2008, (11): 1031-1036. doi: 10.3724/SP.J.1105.2008.01031

    13. [13]

      高玉书陈秀蓉 . 用逆流法研究热场流分级中峰加宽效应和测定分子量分布. 高分子学报, 1989, (3): 285-290.

    14. [14]

      许承威宋栩冰 . 高分子溶剂的选择——薄层色谱法表征溶剂对高分子的溶解能力. 高分子学报, 1980, (5): 281-284.

    15. [15]

      陈力黄恒圳王玉忠JOW JindeSU Kenny . 固态后缩聚方法合成高分子量的含磷热致性液晶共聚酯. 高分子学报, 2009, (5): 493-498. doi: 10.3724/SP.J.1105.2009.00493

    16. [16]

      张国耀徐力平姜宁刘东 . 热拉伸的超高分子量聚乙烯的晶体结构和力学性能. 高分子学报, 1995, (5): 577-585.

    17. [17]

      錢人元秦汶岳國粹 . 渗透壓法測定高聚物的分子量. 高分子学报, 1957, 1(1): 2-16.

    18. [18]

      陈忠平褚道葆陈君华过家好尹晓娟吴何珍 . 循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察. 高分子学报, 2007, (6): 536-540.

    19. [19]

      彭志坚司文捷傅鹤鉴曾红梅苗赫濯 . 高分子量的枝状聚硅烷的合成与表征. 高分子学报, 2002, (3): 301-308.

    20. [20]

      赵得禄徐端夫俞义珊范庆荣钱人元 . 聚丙烯分子量分布的一种简易流变性质表征法. 高分子学报, 1983, (3): 234-237.

  • Figure 1.  Illustration of heat-flux DSC (Mettler-Toledo heat-flux DSC) with the heating rate controlled through the furnace temperature. There are two sets of thermocouples measuring the heat flow between the furnace and the pan for sample and reference and two central terminals bringing the average T signal from all the thermocouples out to the computer.

    Figure 2.  Illustration of power-compensation DSC as invented by Perkin Elmer with the reference and the sample separately heated by two platinum resistance thermometers in two calorimeters mounted in a constant temperature block.

    Figure 3.  Illustration of the calibration of temperature and heat-flow rate with the standard material Indium for DSC measurement. The curve is characterized by its baseline and the endothermic process with some characteristic temperatures including the beginning of melting, Tb, the extrapolated onset of melting, Tm, the peak temperature, Tp, and the end of melting where the baseline is finally recovered, Te. Generally, Tm is the most reproducible point as an accurate measure of the equilibrium temperature which are used for the temperature calibration. The peak area below the baseline can be compared with the expected fusion heat of standard materials for the calibration of the heat flow rate.

    Figure 4.  Heat flow curves of standard sapphire and unknown specimens where Ds (mW) is the vertical displacement between the baseline and the specimen DSC thermal curves at a given temperature while Dst (mW) is vertical displacement between the baseline and the sapphire DSC thermal curves at a given temperature.

    Figure 5.  The heat-flow rate (the upper curve in the left axis) and its derivative (the lower curve in the right axis) curves in the glass transition region with some characteristic temperatures including the beginning of glass transition Tb, the extrapolated onset temperature Tb1, the midpoint temperature Tg, the inflection temperature Ti, the extrapolated end temperature Te1 and the temperature of return-to-baseline Te as listed. The glass transition is determined by Tg (°C)—the point on the thermal curve corresponding to the half of the heat flow difference between the extrapolated onset and extrapolated end.

    Figure 6.  Typical temperature profile of sinusoidal TMDSC (blue and solid curve) and its underlying heating rate curve with $ \;{\beta }_{0} $ of 1 K·min−1 (red and dashed line). The amplitude of modulation AT is 0.5 K, the period of modulation $ {t}_{{\rm{p}}} $ is 60 s. (Reprinted with permission from Ref.[24]; Copyright (2009) Polymer Bulletin)

    Figure 7.  The heat-flow curve measured by the sinusoidal temperature-modulated DSC (Reprinted with permission from Ref.[24]; Copyright (2009) Polymer Bulletin)

    Figure 8.  The total heat-flow curve of a sinusoidal TMDSC curve. (Reprinted with permission from Ref.[24]; Copyright (2009) Polymer Bulletin)

    Figure 9.  Typical temperature profile for sawtooth TMDSC (solid line) and its deconvoluted underlying heating rate $ \;{\beta }_{0} $ of 1 K·min−1 and the reversing rate of temperature change of ±3 K·min−1 (dashed lines). T1 and T2 indicate the beginnings and ends of the cycles, respectively. (Reprinted with permission from Ref.[35]; Copyright (2014) Springer Nature)

    Figure 10.  Illustration of the linear thermal response (solid lines) for the temperature profile of Fig 11. The lightly dotted boxes and the heavily dotted boxes separately indicate the underlying and the reversing responses. The heavy line represents the heat flow rate $\textit{ϕ} \left(t\right)$. The pseudo-isothermal level (Ps), the zero level (0) and the value of upper and lower limits of the heat flow rate ${\textit{ϕ} }_{{\rm{h}}}$ and ${\textit{ϕ} }_{\mathrm{c}}$ are marked, respectively. (Reprinted with permission from Ref.[35]; Copyright (2014) Springer Nature)

    Figure 11.  Illustration of the nonlinear thermal response in each cycle measured by sawtooth TMDSC where HFh and HFc separately represent the heat flow rate measured in the heating and cooling half cycles.

    Figure 12.  The heat capacity curves of poly(ethylene terephthalate) (PET) measured by sawtooth TMDSC with temperature profile of Fig. 11. The heat flow data is analyzed with the standard DSC method: reversing heat capacity from Eq. (26), total heat capacity from Eq. (25), non-reversing heat capacity from the difference between total and reversing heat capacity, and imbalance of heat capacity from Eq. (28). Also listed are the ATHAS data bank data for the heat capacity of amorphous PET. (Reprinted with permission from Ref.[35]; Copyright (2014) Springer Nature)

    Figure 13.  The apparent heat capacity curves of PET during the heating process after crystallized by cooling from the melt to 44% crystallinity. The standard DSC curve and TMDSC curve are separately with intermediate and heavy thickness. Also plotted are the data-bank information (thin line) and the computed heat capacity for the sample of 44% crystalline PET (broken line). (Reprinted with permission from Ref.[36]; Copyright (2014) Elsevier)

    Figure 14.  Illustration of reversible premelting on the fold-end surface of polymer lamellar crystals. There exists a local force balance between the recovery tendency of the stretched loops and the thickening tendency of the lamellar crystals (see arrows). (Reprinted with permission from Ref.[39]; Copyright (2014) American Chemical Society).

    Figure 15.  (a) The heat-flow rate curve (the black curve in the right axis) of the doped iPP as a response to the temperature-modulation program (the red curve in the left axis) with the frequency 12.5 Hz, the amplitude ±1 K and the baseline annealing temperature 398 K. (b) Frequency dependences of specific reversing heat capacities of raw and doped iPP samples measured by sawtooth TMDSC. The dashed line represents the standard specific vibrational heat capacity for iPP melt at 398 K that is cited from the literature [41]. (Reprinted with permission from Ref.[40]; Copyright (2014) Elsevier)

    Figure 16.  TMDSC measurement with the underlying heating rate 2 K·min−1, modulation period 80.5 s, and modulation amplitude 1.0 K for PS after annealing for 240 min at 353.15 K in order to separate the reversing and non-reversing contributions to the apparent heat capacity in the glass transition temperature region. Left figure: Modulated heat flow, the sliding averages, and the evaluated reversing and non-reversing heat capacities; Right figure: Expanded scale drawings of the three sliding averages. (Reprinted with permission from Ref.[42]; Copyright (2014) Elsevier)

    Figure 17.  Specific reversing heat capacity curves of PLA-H cooled from 373 K to 283 K in TMDSC at different modulation frequencies. The underlying cooling rate is 0.1 K·min−1, and the maximum cooling rate ATω remains at π/100 with the modulation amplitude ranging from 0.05 K to 0.5 K and the modulation period ranging from 10 s to 100 s resulting in a wide range of modulation frequency from 0.01 Hz to 100 Hz. (Reprinted with permission from Ref.[43]; Copyright (2014) American Chemical Society)

    Figure 18.  The photographs of Flash DSC1 apparatus. Top left: Flash DSC1; Top right: the unloaded chip sensor UFS1; Bottom left: the sample transfer; Bottom right: the membrane of the sample or reference cell on sensor. (Reprinted with permission from METTLER-TOLEDO Company)

    Figure 19.  Apparent heat capacity curves of C66 samples obtained on heating at 3000 K·s−1 after cooled at −10 K·s−1 from a stay of 0.2 s at different erasing temperatures ranging from 180 ℃ to 210 ℃ (Reprinted with permission from Ref.[70]; Copyright (2014) Elsevier)

    Figure 20.  Apparent heat capacity curves of V30G sample obtained on cooling at various rates as labeled (Reprinted with permission from Ref.[60]; Copyright (2014) Springer Nature).

    Figure 21.  Apparent heat capacity curves of V30G sample obtained on heating at various rates as labeled (Reprinted with permission from Ref.[60]; Copyright (2014) Springer Nature)

    Figure 22.  Comparison of temperature dependence of crystallization half-times of PA and PK during isothermal crystallization process at various crystallization temperatures (Reprinted with permission from Ref.[73]; Copyright (2014) John Wiley and Sons)

    Figure 23.  Summary of temperature dependence of crystallization half-times of PA46, PA66, PA610, PA612, PA1012 and PA12 during isothermal crystallization processes at various temperatures (Reprinted with permission from Ref.[75]; Copyright (2014) Elsevier)

    Figure 24.  (a, b) FSC measurement of power law relationships between apparent superheating Tm,onsetTc and heating rates h for α-crystals and β-crystals of iPP prepared at three crystallization temperatures Tc as labeled. (c) Mote Carlo simulations of power law relationship between apparent superheating Tm,onsetTc and heating rates h for lamellar iPP crystals with different chain mobility characterized by Ef/Ec and different crystallization temperatures Tc as labeled (Reprinted with permission from Ref.[78]; Copyright (2014) Elsevier)

    Figure 25.  (a) Heat flow curves of PLLA crystals after annealing at 152 °C for various periods from 0 s to 600 s; (b) AFM height image of nascent PLLA crystals; (c) AFM height image of PLLA after annealed at 152 °C for 1000 s (Reprinted with permission from Ref.[85]; Copyright (2014) Elsevier)

    Figure 26.  Reciprocals of the relaxation time (left axis, pentagons) and cooling rate (right axis, stars) as functions of the inverse of temperature and fictive temperature for PtBs samples at different length scales. The solid lines are VFT fits for the relationship between relaxation time (or cooling rate) and fictive temperature. The confinement-length dependence of fictive temperature at different cooling rates is presented in the inset where the dashed and solid lines are linear fits of the length-scale-dependent fictive temperature measured at high and low cooling rates, respectively. (Reprinted with permission from Ref.[87]; Copyright (2014) American Physical Society)

    Figure 27.  (a) Top: Illustration of two indium particles separately placed on the top of a regular-shaped sample and on the surface of the reference cell. Bottom: the photographs of the sample cell and the reference cell. (b) Temperature profile for isothermal crystallization and subsequent melting of the samples. (c) Apparent heat capacity curves of Nylon 46 at various heating rates as labeled and the exothermal peak and endothermal peak indicate separately the melting of the indium on the reference cell and on the top of sample Nylon 46. (d) Melting point differences of two indium particles at various heating rates for three Nylon samples (Reprinted with permission from Ref.[90]; Copyright (2014) Elsevier)

    Figure 28.  Illustration of time scales of fast-scan chip-calorimetry measurement and Monte Carlo simulation towards the identical time window of polymer crystallization and melting (Reprinted with permission from Ref.[91]; Copyright (2014) Springer Nature)

  • 加载中
图(28)
计量
  • PDF下载量:  48
  • 文章访问数:  3768
  • HTML全文浏览量:  1866
  • 引证文献数: 0
文章相关
  • 通讯作者:  胡文兵, wbhu@nju.edu.cn
  • 收稿日期:  2020-10-26
  • 修稿日期:  2020-11-17
  • 刊出日期:  2021-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计