ISSN 1000-3304CN 11-1857/O6

聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐热电性能的提升策略研究进展

黄轩 刘卓鑫 刘福生 陈光明

引用本文: 黄轩, 刘卓鑫, 刘福生, 陈光明. 聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐热电性能的提升策略研究进展[J]. 高分子学报, 2021, 52(4): 339-349. doi: 10.11777/j.issn1000-3304.2020.20245 shu
Citation:  Xuan Huang, Zhuo-xin Liu, Fu-sheng Liu and Guang-ming Chen. Progress of Strategies for Improving Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)[J]. Acta Polymerica Sinica, 2021, 52(4): 339-349. doi: 10.11777/j.issn1000-3304.2020.20245 shu

聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐热电性能的提升策略研究进展

    作者简介: 陈光明,男,1973年生. 深圳大学特聘教授,博士生导师. 2000年于中国科学院化学研究所获博士学位. 2017年当选英国皇家化学会会士. 近年来主要从事聚合物及其复合热电材料与柔性器件方面的研究;
    通讯作者: 陈光明, E-mail: chengm@szu.edu.cn
摘要: 近十年,有机聚合物及其复合热电材料与柔性器件取得了显著进展,在废热回收利用、可穿戴电子学、软体机器人和物联网等领域有广泛的应用. 其中,聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)是迄今研究最多也是性能最高的聚合物体系. 本文对近年来有关PEDOT:PSS热电性能有效提升主要策略的文献报道进行了总结. 首先,从PEDOT:PSS的二次掺杂/去掺杂、酸或碱处理和离子液体处理方面等,重点论述了掺杂/去掺杂策略的研究进展;然后,分别从改善聚集态结构、构筑PEDOT微纳米结构和与碳纳米材料复合等3个方面,重点介绍了采用此3种策略提升PEDOT:PSS热电性能的研究进展;最后,对该领域进行总结,提出了开展进一步研究的建议,并对其未来发展前景进行展望.

English

    1. [1]

      Petsagkourakis I, Kim N, Tybrandt K, Zozoulenko I, Crispin X. Adv Electron Mater, 2019, 5(11): 1800918 doi: 10.1002/aelm.201800918

    2. [2]

      Qu D, Huang X, Li X, Wang H, Chen G. npj Flex Electron, 2020, 4: 1 doi: 10.1038/s41528-020-0064-2

    3. [3]

      Chen G, Li Y, Bick M, Chen J. Chem Rev, 2020, 120(8): 3668−3720 doi: 10.1021/acs.chemrev.9b00821

    4. [4]

      Li Xin(李昕), Xu Yingtao(许英涛), Zheng Yiping(郑一平), Zhang Yan(张焱), Li Congju(李从举), Chen Guangming(陈光明). Acta Polymerica Sinica(高分子学报), 2017, (4): 661−668 doi: 10.11777/j.issn1000-3304.2017.16158

    5. [5]

      Zhu Q, Wang X, Zheng Y, Tan T L, Wu G, Yang S W, Xu J. Front Chem, 2019, 7: 00783 doi: 10.3389/fchem.2019.00783

    6. [6]

      Choi K, Kim S L, Yi Si, Hsu J H, Yu C. ACS Appl Mater Interfaces, 2018, 10(28): 23891−23899 doi: 10.1021/acsami.8b06850

    7. [7]

      Hosseini E, Kollath V O, Karan K. J Mater Chem C, 2020, 8(12): 3982−3990 doi: 10.1039/C9TC06311K

    8. [8]

      Kim Y J, Kim N K, Park W T, Liu C, Noh Y Y, Kim D Y. Adv Funct Mater, 2019, 29(23): 1807786 doi: 10.1002/adfm.201807786

    9. [9]

      Shi X L, Zou J, Chen Z G. Chem Rev, 2020, 120(15): 7399−7515 doi: 10.1021/acs.chemrev.0c00026

    10. [10]

      Xia Y, Sun K, Ouyang J. Adv Mater, 2012, 24(18): 2436−2440 doi: 10.1002/adma.201104795

    11. [11]

      Yeo J S, Yun J M, Kim D Y, Park S, Kim S S, Yoon M H, Kim T W, Na S I. ACS Appl Mater Interfaces, 2012, 4(5): 2551−2560 doi: 10.1021/am300231v

    12. [12]

      Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J. ACS Appl Mater Interfaces, 2016, 8(35): 23204−23211 doi: 10.1021/acsami.6b07234

    13. [13]

      Jiang Q, Liu C, Song H, Xu J, Zhang G, Lu B. J Mater Sci, 2013, 24: 4240−4246

    14. [14]

      Wen Huiying(温慧颖), Meng Yanfeng(蒙延峰), Jiang Shichun(蒋世春), An Lijia(安立佳). Acta Polymerica Sinica(高分子学报), 2008, (2): 107−115 doi: 10.3321/j.issn:1000-3304.2008.02.003

    15. [15]

      Cho C, Wallace K L, Tzeng P, Hsu J H, Yu C, Grunlan J C. Adv Energy Mater, 2016, 6(7): 1502168 doi: 10.1002/aenm.201502168

    16. [16]

      Liang L, Gao C, Chen G, Guo C Y. J Mater Chem C, 2016, 4(3): 526−532 doi: 10.1039/C5TC03768A

    17. [17]

      Bahk J H, Fang H, Yazawa K, Shakouri A. J Mater Chem C, 2015, 3(40): 10362−10374 doi: 10.1039/C5TC01644D

    18. [18]

      Pu S, Fu J, Liao Y, Ge L, Zhou Y, Zhang S, Zhao S, Liu X, Hu X, Liu K, Chen J. Adv Mater, 2020, 32(17): 1907307 doi: 10.1002/adma.201907307

    19. [19]

      Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y, Jiang F. ACS Appl Mater Interfaces, 2019, 11(2): 2408−2417 doi: 10.1021/acsami.8b19168

    20. [20]

      Jeong M H, Sanger A, Kang S B, Jung Y S, Oh I S, Yoo J W, Kim G H, Choi K J. J Mater Chem A, 2018, 6(32): 15621−15629 doi: 10.1039/C8TA03606C

    21. [21]

      Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M, Zozoulenko I, Berggern M, Crispin X. Nat Mater, 2014, 13(2): 190−194 doi: 10.1038/nmat3824

    22. [22]

      Zhou X, Pan C, Gao C, Shinohara A, Yin X, Wang L, Li Y, Jiang Q, Yang C, Wang L. J Mater Chem A, 2019, 7(17): 10422−10430

    23. [23]

      Liu Z, Chen G. Adv Mater Technol, 2020, 5(7): 2000049 doi: 10.1002/admt.202000049

    24. [24]

      Ni D, Chen Y, Song H, Liu C, Yang X, Cai K. J Mater Chem A, 2019, 7(3): 1323−1333 doi: 10.1039/C8TA08814D

    25. [25]

      Zeng M, Wang X, Ma R, Zhu W, Li Y, Chen Z, Zhou J, Li W, Liu T, He Z, Yan H, Huang F, Cao Y. Adv Energy Mater, 2020, 10(25): 2000743 doi: 10.1002/aenm.202000743

    26. [26]

      Itoh K, Kato Y, Honma Y, Masunaga H, Fujiwara A, Iguchi S, Sasaki T. J Phys Chem C, 2019, 123(22): 13467−13471 doi: 10.1021/acs.jpcc.9b02475

    27. [27]

      Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q. Adv Funct Mater, 2019, 30(8): 19038

    28. [28]

      Zhang Y, Deng L, Lv H, Chen G. npj Flex Electron, 2020, 4: 26 doi: 10.1038/s41528-020-00089-2

    29. [29]

      Deng L, Chen G. Nano Energy, 2021, 80: 105448 doi: 10.1016/j.nanoen.2020.105448

    30. [30]

      Mullar R, Dunnill C W. Compos Commun, 2020, 20: 100345 doi: 10.1016/j.coco.2020.04.011

    31. [31]

      Chen Y, Zhao Y, Liang Z. Energy Environ Sci, 2015, 8(2): 401−422 doi: 10.1039/C4EE03297G

    32. [32]

      Han S, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X. Adv Funct Mater, 2017, 27(44): 1703549 doi: 10.1002/adfm.201703549

    33. [33]

      Wu G, Zhang Z G, Li Y, Gao C, Wang X, Chen G. ACS Nano, 2017, 11(6): 5746−5752 doi: 10.1021/acsnano.7b01279

    34. [34]

      Qu D, Li X, Wang H, Chen G. Adv Sci, 2019, 6(15): 1900584 doi: 10.1002/advs.201900584

    35. [35]

      Antiohos D, Folkes G, Sherrell P, Ashraf S, Wallace G G, Aitchison P, Harris A T, Chen J, Minett A I. J Mater Chem, 2011, 21(40): 15987−15994 doi: 10.1039/c1jm12986d

    36. [36]

      Zhou J, Ventura I, Lubineau G. Ind Eng Chem Res, 2014, 53(9): 3539−3549 doi: 10.1021/ie4033389

    37. [37]

      Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Angew Chem Int Ed, 2019, 58(43): 15532−15540 doi: 10.1002/anie.201910489

    38. [38]

      Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L, Muller C. Chem Soc Rev, 2016, 45(22): 6147−6164 doi: 10.1039/C6CS00149A

    39. [39]

      Biniek L, Leclerc N, Heiser T, Bechara R, Brinkmann M. Macromolecules, 2013, 46(10): 4014−4023 doi: 10.1021/ma400516d

    40. [40]

      Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater, 2013, 12(11): 1038−1044 doi: 10.1038/nmat3722

    41. [41]

      Maity S, Kulsi C, Banerjee S, Das S, Chatterjee K. Mater Res Exp, 2019, 6(10): 105095 doi: 10.1088/2053-1591/ab3e7c

    42. [42]

      Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I, Nikolka M, Kuroda S, Sirringhaus H. Nat Mater, 2016, 15(8): 896−902

    43. [43]

      Ju D, Kim D, Yook H, Han J W, Cho K. Adv Funct Mater, 2019, 29: 1905590 doi: 10.1002/adfm.201905590

    44. [44]

      Kim B, Shin H, Park T, Lim H, Kim E. Adv Mater, 2013, 25(38): 5483−5489 doi: 10.1002/adma.201301834

    45. [45]

      Wang L, Zhang Z, Liu Y, Wang B, Fang L, Qiu J, Zhang K, Wang S. Nat Commun, 2018, 9: 3817 doi: 10.1038/s41467-018-06251-9

    46. [46]

      Xu Di(许頔), Shen Hujiang(沈沪江), Xie Junjie(解俊杰), Wang Wei(王炜), Yuan Huihui(袁慧慧), Li Yuyu(李昱煜), Zhang Tao(张焘), Chen Xinyu(陈薪羽), He Yunlong(何云龙), Zhang Yumei(张玉梅). Acta Polymerica Sinica(高分子学报), 2019, 50(1): 36−43 doi: 10.11777/j.issn1000-3304.2018.18169

    47. [47]

      Zhang S, Fan Z, Wang X, Zhang Z, Ouyang J. J Mater Chem A, 2018, 6(16): 7080−7087 doi: 10.1039/C7TA11148G

    48. [48]

      Zhao J, Tan D, Chen G. J Mater Chem C, 2017, 5(1): 47−53 doi: 10.1039/C6TC04613D

    49. [49]

      Xie J, Zhao C E, Lin Z Q, Gu P Y, Zhang Q. Chem Asian J, 2016, 11(10): 1489−151 doi: 10.1002/asia.201600293

    50. [50]

      Li X, Liu C, Zhou W, Duan X, Du Y, Xu J, Li C, Liu J, Jia Y, Liu P, Jiang Q, Luo C, Liu C, Jiang F. ACS Appl Mater Interfaces, 2019, 11(8): 8138−8147 doi: 10.1021/acsami.9b00298

    51. [51]

      Wu J, Sun Y, Pei W B, Huang L, Xu W, Zhang Q. Synth Met, 2014, 196: 173−177 doi: 10.1016/j.synthmet.2014.08.001

    52. [52]

      Saxena N, Pretzl B, Lamprecht X, Biessmann L, Yang D, Li N, Bilko C, Bernstorff S, Muller-Buschbaum P. ACS Appl Mater Interfaces, 2019, 11(8): 8060−8071

    53. [53]

      Xue Y, Gao C, Liang L, Wang X, Chen G. J Mater Chem A, 2018, 6(45): 22381−22390 doi: 10.1039/C8TA09656B

    54. [54]

      Hu X, Chen G, Wang X, Wang H. J Mater Chem A, 2015, 3(42): 20896−20902 doi: 10.1039/C5TA07381B

    55. [55]

      Yao C J, Zhang H L, Zhang Q. Polymer, 2019, 11(1): 30960091

    56. [56]

      Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Adv Mater, 2014, 26(14): 2268−2272 doi: 10.1002/adma.201304611

    57. [57]

      Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A. Nat Rev Mater, 2016, 1(10): 16050 doi: 10.1038/natrevmats.2016.50

    58. [58]

      Hu X, Chen G, Wang X. Compos Sci Technol, 2017, 144: 43−50 doi: 10.1016/j.compscitech.2017.03.018

    59. [59]

      Du Y, Shi Y, Meng Q, Shen S Z. Synth Met, 2020, 261: 116318 doi: 10.1016/j.synthmet.2020.116318

    60. [60]

      Liu S, Li H, He C. Carbon, 2019, 149: 25−32 doi: 10.1016/j.carbon.2019.04.007

    61. [61]

      Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J, Jiang F. Mater Chem Front, 2018, 2(4): 679−685 doi: 10.1039/C7QM00515F

    62. [62]

      Zhang T, Qi H, Liao Z, Horev Y D, Panes Ruiz L A, Petkov P S, Zhang Z, Dong R, Feng X. Nat Commun, 2019, 10(1): 4225 doi: 10.1038/s41467-019-11921-3

    63. [63]

      Kim J Y, Jung J H, Lee D E, Joo J. Synth Met, 2002, 126(2−3): 311−31

    64. [64]

      Yi C, Wilhite A, Zhang L, Hu R, Chuang S S C, Zheng J, Gong X. ACS Appl Mater Interfaces, 2015, 7(17): 8984−8989 doi: 10.1021/acsami.5b01960

    65. [65]

      Park H, Lee S H, Kim F S, Choi H H, Cheong I W, Kim J H. J Mater Chem A, 2014, 2(18): 6532−6539 doi: 10.1039/C3TA14960A

    66. [66]

      Honma Y, Itoh K, Masunaga H, Fujiwara A, Nishizaki T, Iguchi S, Sasaki T. Adv Electron Mater, 2018, 4(2): 1700490 doi: 10.1002/aelm.201700490

    67. [67]

      Nardes A M, Janssen R A J, Kemerink M. Adv Funct Mater, 2008, 18(6): 865−871 doi: 10.1002/adfm.200700796

    68. [68]

      Zhu Z, Liu C, Jiang F, Xu J, Liu E. Synth Met, 2017, 225: 31−40 doi: 10.1016/j.synthmet.2016.11.011

    69. [69]

      Toolan D T W, Isakova A, Hodgkinson R, Gough T, Topham P D, Howse J R. Macromolecules, 2016, 49(12): 4579−4586 doi: 10.1021/acs.macromol.6b00312

    70. [70]

      Kim G H, Shao L, Zhang K, Pipe K P. Nat Mater, 2013, 12(8): 719−723 doi: 10.1038/nmat3635

    71. [71]

      Xu S, Hong M, Shi X L, Wang Y, Ge L, Bai Y, Wang L, Zou J, Chen Z G. Chem Mater, 2019, 31(14): 5238−5244 doi: 10.1021/acs.chemmater.9b01500

    72. [72]

      Chen G, Xu W, Zhu D. J Mater Chem, 2017, 5(18): 4350−4360

    73. [73]

      Wang X, Zhang X, Sun L, Lee D, Palacios T, Gleason K K. Sci Adv, 2018, 4(9): eaat5780 doi: 10.1126/sciadv.aat5780

    74. [74]

      Zhang K, Qiu J, Wang S. Nanoscale, 2016, 8(15): 8033−8041 doi: 10.1039/C5NR08421K

    75. [75]

      Li Xin(李昕), Wang Xichang(王喜常), Zheng Yiping(郑一平), Zhang Yan(张焱), Li Congju(李从举), Chen Guangming(陈光明). Acta Polymerica Sinica(高分子学报), 2016, (1): 91−97 doi: 10.11777/j.issn1000-3304.2016.15133

    76. [76]

      Hsu J H, Choi W, Yang G, Yu C. Org Electron, 2017, 45: 182−189 doi: 10.1016/j.orgel.2017.03.007

    77. [77]

      Yu C, Choi K, Yin L, Grunlan J C. ACS Nano, 2011, 5(10): 7885−7892 doi: 10.1021/nn202868a

    78. [78]

      Choi K, Yu C. Plos One, 2012, 7(9): e44977 doi: 10.1371/journal.pone.0044977

    79. [79]

      Yoo D, Kim J, Kim J H. Nano Res, 2014, 7(5): 717−730 doi: 10.1007/s12274-014-0433-z

    80. [80]

      Du F P, Cao N N, Zhang Y F, Fu P, Wu Y G, Lin Z D, Shi R, Amini A, Cheng C. Sci Rep, 2018, 8: 6441 doi: 10.1038/s41598-018-24632-4

    1. [1]

      徐旻沈洁张红胡杨李凌霄阚成友 . 有机硅-聚氨酯共聚乳液的制备和乳胶膜相结构及其性能研究. 高分子学报, 2016, (12): 1686-1694. doi: 10.11777/j.issn1000-3304.2016.16096

    2. [2]

      王新月冯古雨李梦娟葛明桥 . 由分子链构象转变及结构重组引起的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸/聚乙烯醇纤维高性能化. 高分子学报, 2018, 0(5): 648-655. doi: 10.11777/j.issn1000-3004.2017.17208

    3. [3]

      邓永红黎卓熹邱学青赵大成 . 聚(3,4-乙撑二氧噻吩)/木质素磺酸导电复合物的结构与性能. 高分子学报, 2015, (5): 589-595. doi: 10.11777/j.issn1000-3304.2015.14363

    4. [4]

      郑华靖蒋亚东徐建华杨亚杰 . 修饰Langmuir-Blodget膜法制备聚(3,4-亚乙基二氧噻吩)薄膜结构和导电性能的研究. 高分子学报, 2010, (8): 1043-1049. doi: 10.3724/SP.J.1105.2010.09470

    5. [5]

      高晗张扬 . 聚(3,4-乙烯二氧噻吩)在电磁屏蔽领域的应用. 高分子学报, 2020, 51(9): 996-1009. doi: 10.11777/j.issn1000-3304.2020.20071

    6. [6]

      徐洪耀光善仪张胜义童保云唐本忠 . 聚苯乙炔立体结构与光致发光性能关系的研究. 高分子学报, 2001, (2): 186-190.

    7. [7]

      杜文杰任毅唐毓婧姚雪容郭梅芳张师军刘立志 . 线性低密度聚乙烯薄膜撕裂性能和结构的关系. 高分子学报, 2016, (7): 895-902. doi: 10.11777/j.issn1000-3304.2016.15333

    8. [8]

      金祖铨周嘉芳李思滔李德芬 . 聚四甲基亚苯基硅氧烷及其共聚物的亚微观结构与性能的关系. 高分子学报, 1997, (6): 678-683.

    9. [9]

      曾汉民张维邦曾景文李艳明 . 碳链接枝共聚物——Ⅴ.少量天然橡胶与甲基丙烯酸-苯乙烯接枝共聚及其产物的结构与性能关系. 高分子学报, 1965, 7(6): 433-447.

    10. [10]

      赵春宝吐尔逊.阿不都热依木雷育宾石伟司马义.努尔拉 . 碳纳米管聚(3′,4′-亚乙基二氧-2,2′:5′,2″-三噻吩)复合材料的制备及其电化学性能研究. 高分子学报, 2009, (12): 1186-1191. doi: 10.3724/SP.J.1105.2009.01186

    11. [11]

      王文俊SHINFranklinG.CHANT.C. . 1,3-二烯基-1,1,3,3-四甲基二硅氧烷/苯乙烯共聚物的合成及其热性能. 高分子学报, 1998, (4): 477-481.

    12. [12]

      付群王德庆焦正吴明红 . 预辐照接枝丙烯酸、苯乙烯磺酸钠对聚全氟乙丙烯膜性能的影响. 高分子学报, 2009, (4): 398-402. doi: 10.3724/SP.J.1105.2009.00398

    13. [13]

      李悦生丁孟贤徐纪平 . 单醚二酐型聚醚酰亚胺的透气性能与分子结构之间关系的研究. 高分子学报, 1994, (4): 433-440.

    14. [14]

      周杏茂徐伯玲许万兴刘仁儒王佩芸 . 聚乙烯与聚顺-1,4-丁二烯共混材料的结构与性能. 高分子学报, 1982, (1): 49-56.

    15. [15]

      张宏放龚志王佛松 . 晶性3,4-聚异戊二烯的结构研究. 高分子学报, 1995, (6): 720-724.

    16. [16]

      富海涛杨大令张守海杨永强蹇锡高 . PPESK纺丝液相分离行为与气体分离膜结构性能的关系. 高分子学报, 2007, (7): 615-620.

    17. [17]

      马京晶庞德仁黄葆同 . EPR-g-PS热塑弹性体结构与性能的关系. 高分子学报, 1984, (3): 168-173.

    18. [18]

      陈重酉相庆斌李建荣成淑红张浴辉魏蕴裴马瑞申 . 工业用涤纶纤维热收缩性能与结构关系的研究. 高分子学报, 1997, (5): 530-536.

    19. [19]

      郭春玲张宏放龚志薛小芙莫志深王佛松 . 3,4-聚异戊二烯的磺化反应及其离聚体的结构研究. 高分子学报, 1990, (5): 554-558.

    20. [20]

      苏新清乔金樑华幼卿刘轶群张晓红高建明谭邦会宋志海 . 具有包藏结构的三元聚丙烯纳米复合材料结构与性能关系的研究. 高分子学报, 2005, (1): 142-148.

  • Figure 1.  Chemical structure of PEDOT:PSS.

    Figure 2.  Schematic diagram of the de-doping procedure of PEDOT:PSS nanofilms (Reprinted with permission from Ref.[65]; Copyright (2014) The Royal Society of Chemistry)

    Figure 3.  Diagram of treatment of PEDOT:PSS films by concentrated sulfuric acid (Reprinted with permission from Ref.[56]; Copyright (2014) WILEY-VCH)

    Figure 4.  Enhancement of thermoelectric properties of PEDOT:PSS films by ionic liquids (Adapted with permission from Ref.[52]; Copyright (2019) American Chemical Society)

    Figure 5.  Cyclic voltammograms (CVs) of PEDOT:PSS films untreated and treated with 0.1 mol·L−1 ZnCl2-DMF solution at 80 °C (Reprinted with permission from Ref.[72]; Copyright (2016) American Chemical Society)

    Figure 6.  PEDOT crystallization-orientation transition induced by engineered deposition temperature and film thickness. Schematic representation of (a) (left) face-on stacking in ultrathin films and (right) edge-on stacking in thick films, and (b) high crystallinity induced by high deposition temperature in face-on regime. (c) Room-temperature XRD maps (q-2q) of 10-nm thin film (Adapted with permission from Ref.[73]. Copyright (2018) American Association for the Advancement of Science)

    Figure 7.  FESEM images of bulk PEDOT and its nanostructures: (a) bulk power, (b) globular nanoparticles, (c) nanorods or ellipsoidal nanoparticles, (d) nanotubes and (e) nanofibers (Reprinted with permission from Ref.[54]; Copyright (2015) The Royal Society of Chemistry)

    Figure 8.  Origin of unusual changes in thermoelectric properties of polymer/CNT composites upon chemical treatments through morphological and compositional investigations (Reprinted with permission from Ref.[77]; Copyright (2011) American Chemical Society)

    Figure 9.  TEM images of (a) PEDOT:PSS/graphene films and (b) magnified image (Reprinted with permission from Ref.[79]; Copyright (2014) Springer)

  • 加载中
图(9)
计量
  • PDF下载量:  8
  • 文章访问数:  1269
  • HTML全文浏览量:  784
  • 引证文献数: 0
文章相关
  • 通讯作者:  陈光明, chengm@szu.edu.cn
  • 收稿日期:  2020-11-04
  • 修稿日期:  2020-11-19
  • 刊出日期:  2021-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计