浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海市先进聚合物重点实验室 上海 200237
E-mail: lq_wang@ecust.edu.cn Li-quanWang, E-mail: lq_wang@ecust.edu.cn
E-mail: jlin@ecust.edu.cn Jia-ping Lin, E-mail: jlin@ecust.edu.cn
纸质出版日期:2019-11,
网络出版日期:2019-6-12,
收稿日期:2019-4-16,
修回日期:2019-5-10,
扫 描 看 全 文
楚明, 朱峻立, 王立权, 林嘉平, 杜磊, 蔡春华. 基于材料基因组方法的含硅芳炔树脂的设计与合成[J]. 高分子学报, 2019,50(11):1211-1219.
Ming Chu, Jun-li Zhu, Li-quan Wang, Jia-ping Lin, Lei Du, Chun-hua Cai. Accelerating the Design and Synthesis of Heat-resistant Silicon-containing Arylacetylene Resins by a Material Genome Approach[J]. Acta Polymerica Sinica, 2019,50(11):1211-1219.
楚明, 朱峻立, 王立权, 林嘉平, 杜磊, 蔡春华. 基于材料基因组方法的含硅芳炔树脂的设计与合成[J]. 高分子学报, 2019,50(11):1211-1219. DOI: 10.11777/j.issn1000-3304.2019.19076.
Ming Chu, Jun-li Zhu, Li-quan Wang, Jia-ping Lin, Lei Du, Chun-hua Cai. Accelerating the Design and Synthesis of Heat-resistant Silicon-containing Arylacetylene Resins by a Material Genome Approach[J]. Acta Polymerica Sinica, 2019,50(11):1211-1219. DOI: 10.11777/j.issn1000-3304.2019.19076.
建立了一种针对耐高温树脂设计的材料基因组方法,运用该方法设计筛选了一种固化温度低(加工性能优良)、耐热性能优异的新型含硅芳炔树脂—聚(二苯基硅烷-乙炔基-萘-乙炔基)树脂(简称PSNP树脂). 基于理论设计的结果,通过Sonogashira偶联法制得了2
7-二乙炔基萘,然后以二氯二苯基硅烷和2
7-二乙炔基萘为反应物合成了PSNP树脂. 通过傅里叶变换红外光谱(FTIR)、核磁共振氢谱(
1
H-NMR)等方法对PSNP树脂的结构进行了表征. 利用示差扫描量热分析(DSC)研究了PSNP树脂的固化过程,结果表明PSNP树脂的固化放热峰的峰值温度和固化放热焓均低于传统的含硅芳炔树脂(PSA树脂),改善了树脂的加工性能. 热失重分析(TGA)表明,固化后的PSNP树脂具有优异的耐热性. 树脂的性能与理论设计的结果相符,证实了材料基因组方法对于新型含硅芳炔树脂的设计筛选的有效性.
We developped a material genome approach to accelerate the design and synthesis of novel heat-resistant silicon-containing arylacetylene resins. The material genome approach is based on the consideration that silicon-containing arylacetylene resins can be regard as a combination of silane and diyne units which can be defined as genes used for combination screening. The approach presented here contains two steps. In the first step
various kinds of diynes were collected from the chemical database as candidate structures; the bond dissociation energy (BDE) reflecting heat resistance of resins was calculated; the candidate structures were preliminarily screened with the criteria of BDE; and finally 16 diynes with high BDE were obtained. In the second step
LUMO-HOMO and 50% decomposition temperature (
T
d50
) were calculated by density functional theory and molecular connection index method
respectively; and the optimized gene was obtained out of 16 candidate structures. The screened resin is poly(diphenylsilylene-ethynylene-naphthalene-ethynylene) (abbreviated as PSNP) containing the gene of 2
7-diethynylnaphthalene. To verify the screened results
we first synthsized the PSNP by Sonogashira coupling of dichlorodiphenylsilane and 2
7-diethynylnaphthalene. The molecular structure of PSNP resin was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (
1
H-NMR). The curing process of PSNP resin was studied by differential scanning calorimetry (DSC). The results show that the curing peak temperature (
T
peak
) of PSNP and the enthalpy of exothermic reaction are 212 °C and 173.8 J/g
respectively
which are lower than those of traditional poly(silylene-acetylenearyleneacetylene) resin (PSA). The cured PSNP resin exhibits excellent heat-resistance
where the 5% decomposition temperature (
T
d5
) of the cured PSNP resin is 561 °C. The properties of the resin are consistent with the theoretical design results
which confirms the validity of material genome method for structural screening of new silicon-containing arylacetylene resins.
材料基因组含硅芳炔固化温度耐热性能
Material genome approachSilicon-containing arylacetyleneCuring temperatureHeat resistance
Zong L S, Liu C, Zhang S H, Wang J Y, Jian X G. Polymer , 2015 . 77 177 - 188 . DOI:10.1016/j.polymer.2015.09.035http://doi.org/10.1016/j.polymer.2015.09.035 .
Yang Q, Li X D, Shi L, Yang X P, Sui G. Polymer , 2013 . 54 ( 23 ): 6447 - 6454 . DOI:10.1016/j.polymer.2013.09.055http://doi.org/10.1016/j.polymer.2013.09.055 .
Wang S J, Xing X L, Wang Y N, Wang W, Jing X L. Polym Degrad Stab , 2017 . 144 378 - 391 . DOI:10.1016/j.polymdegradstab.2017.08.034http://doi.org/10.1016/j.polymdegradstab.2017.08.034 .
Wang M C, Ning Y. ACS Appl Mater Interfaces , 2018 . 10 ( 14 ): 11933 - 11940 . DOI:10.1021/acsami.8b00238http://doi.org/10.1021/acsami.8b00238 .
Ran Q C, Gao N, Gu Y. Polym Degrad Stab , 2011 . 96 ( 9 ): 1610 - 1615 . DOI:10.1016/j.polymdegradstab.2011.06.002http://doi.org/10.1016/j.polymdegradstab.2011.06.002 .
Qi H M, Ren H, Pan G Y, Zhuang Y Q, Huang F R, Du L. Polym Adv Technol , 2009 . 20 ( 3 ): 268 - 272 . DOI:10.1002/pat.v20:3http://doi.org/10.1002/pat.v20:3 .
Liu Qian(刘乾), Yang Yuxue(杨玉雪), Zhang Shouhai(张守海), Xue Rendong(薛仁东), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报) , 2018 . ( 5 ): 581 - 587 . DOI:10.11777/j.issn1000-3004.2017.17211http://doi.org/10.11777/j.issn1000-3004.2017.17211 .
Li S, Li H, Li Z, Zhou H, Guo Y, Chen F H, Zhao T. Polymer , 2017 . 120 217 - 222 . DOI:10.1016/j.polymer.2017.05.063http://doi.org/10.1016/j.polymer.2017.05.063 .
Ji S C, Yuan P, Hu J H, Sun R, Zeng K, Yang G. Polymer , 2016 . 84 365 - 370 . DOI:10.1016/j.polymer.2016.01.006http://doi.org/10.1016/j.polymer.2016.01.006 .
Gao L, Zhang Q J, Li H, Yu S R, Zhong W H, Sui G, Yang X P. Polym Chem , 2017 . 8 ( 13 ): 2016 - 2027 . DOI:10.1039/C7PY00063Dhttp://doi.org/10.1039/C7PY00063D .
Chen Jiansheng(陈建升), Qu Ximing(曲希明), Fan Lin(范琳), Zuo Hongjun(左红军), Sun Hongjie(孙宏杰), Yang Shiyong(杨士勇). Acta Polymerica Sinica(高分子学报) , 2007 . ( 6 ): 519 - 523 . DOI:10.3321/j.issn:1000-3304.2007.06.005http://doi.org/10.3321/j.issn:1000-3304.2007.06.005 .
Bao Feng(鲍锋), Liu Cheng(刘程), Song Yuanyuan(宋媛媛), Wu Zuoqiang(邬祚强), Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报) , 2018 . ( 6 ): 692 - 699 . DOI:10.11777/j.issn1000-3304.2017.17265http://doi.org/10.11777/j.issn1000-3304.2017.17265 .
Liu H, Li M, Lu Z Y, Zhang Z G, Sun C C, Cui T. Macromolecules , 2011 . 44 ( 21 ): 8650 - 8660 . DOI:10.1021/ma201390khttp://doi.org/10.1021/ma201390k .
Zhou Q, Zhou Q, Geng J, Ni L Z. High Perform Polym , 2016 . 29 ( 3 ): 249 - 256.
Zhou Q, Ni L Z. J Appl Polym Sci , 2009 . 113 ( 1 ): 10 - 16 . DOI:10.1002/app.v113:1http://doi.org/10.1002/app.v113:1 .
You X T, Deng S F, Huang Y C, Liu Z Q, Hu Y H. J Appl Polym Sci , 2019 . 136 ( 13 ): 47301 DOI:10.1002/app.v136.13http://doi.org/10.1002/app.v136.13 .
Ye L, Han W J, Zhang R L, Hu J D, Zhao T. J Appl Polym Sci , 2008 . 110 ( 6 ): 4064 - 4070 . DOI:10.1002/app.v110:6http://doi.org/10.1002/app.v110:6 .
Xu J F, Wang C Y, Lai G Q, Shen Y J. Eur Polym J , 2007 . 43 ( 2 ): 668 - 672 . DOI:10.1016/j.eurpolymj.2006.11.006http://doi.org/10.1016/j.eurpolymj.2006.11.006 .
Tan D X, Shi T J, Li Z. Res Chem Intermed , 2011 . 37 ( 8 ): 831 - 845 . DOI:10.1007/s11164-011-0291-1http://doi.org/10.1007/s11164-011-0291-1 .
Son D Y, Bucca D, Keller T M. Tetrahedron Lett , 1996 . 37 ( 10 ): 1579 - 1582 . DOI:10.1016/0040-4039(96)00095-0http://doi.org/10.1016/0040-4039(96)00095-0 .
Ohshita J, Sumida T, Kunai A, Adachi A, Sakamaki K, Okita K. Macromolecules , 2000 . 33 ( 23 ): 8890 - 8893 . DOI:10.1021/ma0005062http://doi.org/10.1021/ma0005062 .
Hu J D, Zheng Z M, Ma T, Zhang Z J, Ye J P, Wang D Y, Xie Z M. J Polym Sci, Part A: Polym Chem , 2004 . 42 ( 12 ): 2897 - 2903 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Guo K K, Li P, Zhu Y P, Wang F, Qi H M. Polym Degrad Stab , 2016 . 131 98 - 105 . DOI:10.1016/j.polymdegradstab.2016.07.006http://doi.org/10.1016/j.polymdegradstab.2016.07.006 .
Du Fengke(杜峰可), Yuan Qiaolong(袁荞龙), Huang Farong(黄发荣). Acta Polymerica Sinica(高分子学报) , 2018 . ( 3 ): 410 - 418 . DOI:10.11777/j.issn1000-3304.2017.17099http://doi.org/10.11777/j.issn1000-3304.2017.17099 .
Corriu R J P, Douglas W E, Yang Z X. J Polym Sci, Part C: Polym Lett , 1990 . 28 ( 13 ): 431 - 437 . DOI:10.1002/pol.1990.140281306http://doi.org/10.1002/pol.1990.140281306 .
Chen M F, Xiong P L, Zhou Q, Ni L Z, Wang G C. Polym Int , 2014 . 63 ( 8 ): 1531 - 1536 . DOI:10.1002/pi.2014.63.issue-8http://doi.org/10.1002/pi.2014.63.issue-8 .
Itoh M, Inoue K, Iwata K, Mitsuzuka M, Kakigano T. Macromolecules , 1997 . 30 ( 4 ): 694 - 701 . DOI:10.1021/ma961081fhttp://doi.org/10.1021/ma961081f .
Li Q, Zhou Y, Hang X D, Deng S F, Huang F R, Du L, Li Z P. Eur Polym J , 2008 . 44 ( 8 ): 2538 - 2544 . DOI:10.1016/j.eurpolymj.2008.06.018http://doi.org/10.1016/j.eurpolymj.2008.06.018 .
Chen H G, Xin H, Lu J R, Tang J K, Yuan Q L, Huang F R. High Perform Polym , 2016 . 29 ( 5 ): 595 - 601.
Warren J A. MRS Bull , 2018 . 43 ( 6 ): 452 - 457 . DOI:10.1557/mrs.2018.122http://doi.org/10.1557/mrs.2018.122 .
Zhang Q, Lin J P, Wang L Q, Xu Z W. Prog Polym Sci , 2017 . 75 1 - 30 . DOI:10.1016/j.progpolymsci.2017.04.003http://doi.org/10.1016/j.progpolymsci.2017.04.003 .
Xu Z W, Lin J P, Zhang Q, Wang L Q, Tian X H. Polym Chem , 2016 . 7 ( 23 ): 3783 - 3811 . DOI:10.1039/C6PY00535Ghttp://doi.org/10.1039/C6PY00535G .
Zhang W Q, Zhang J H, Deng M C, Qi X J, Nie F D, Zhang Q H. Nat Commun , 2017 . 8 181 DOI:10.1038/s41467-017-00286-0http://doi.org/10.1038/s41467-017-00286-0 .
Wang Y, Liu Y J, Song S W, Yang Z J, Qi X J, Wang K C, Liu Y, Zhang Q H, Tian Y. Nat Commun , 2018 . 9 2444 DOI:10.1038/s41467-018-04897-zhttp://doi.org/10.1038/s41467-018-04897-z .
Yang K, Setyawan W, Wang S, Buongiorno Nardelli M, Curtarolo S. Nat Mater , 2012 . 11 614 DOI:10.1038/nmat3332http://doi.org/10.1038/nmat3332 .
Gautier R, Zhang X, Hu L, Yu L, Lin Y, Sunde T O L, Chon D, Poeppelmeier K R, Zunger A. Nat Chem , 2015 . 7 308 - 316 . DOI:10.1038/nchem.2207http://doi.org/10.1038/nchem.2207 .
Bai P, Jeon M Y, Ren L, Knight C, Deem M W, Tsapatsis M, Siepmann J I. Nat Commun , 2015 . 6 5912 DOI:10.1038/ncomms6912http://doi.org/10.1038/ncomms6912 .
Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. J Phys Chem , 1994 . 98 ( 45 ): 11623 - 11627 . DOI:10.1021/j100096a001http://doi.org/10.1021/j100096a001 .
McLean A D, Chandler G S. J Chem Phys , 1980 . 72 ( 10 ): 5639 - 5648 . DOI:10.1063/1.438980http://doi.org/10.1063/1.438980 .
Krishnan R, Binkley J S, Seeger R, Pople J A. J Chem Phys , 1980 . 72 ( 1 ): 650 - 654 . DOI:10.1063/1.438955http://doi.org/10.1063/1.438955 .
Becke A D. J Chem Phys , 1993 . 98 ( 7 ): 5648 - 5652 . DOI:10.1063/1.464913http://doi.org/10.1063/1.464913 .
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, et al. Gaussian 09. Revision C.01 ed. Wallingford, CT 2010
Pogliani L. Chem Rev , 2000 . 100 ( 10 ): 3827 - 3858 . DOI:10.1021/cr0004456http://doi.org/10.1021/cr0004456 .
Bicerano J. Prediction of Polymer Properties. 3th ed. New York: Marcel Dekker, Inc. 2002
Zhang Lingling(张玲玲), Gao Fei(高飞), Zhou Wei(周围), Zhang Jian(张健), Huang Farong(黄发荣), Du Lei(杜磊). Chinese Journal of Process Engineering(过程工程学报) , 2009 . 9 ( 3 ): 574 - 579 . DOI:10.3321/j.issn:1009-606X.2009.03.028http://doi.org/10.3321/j.issn:1009-606X.2009.03.028 .
Liu L, Liu Z X, Xu W, Xu H, Zhang D Q, Zhu D B. Tetrahedron , 2005 . 61 ( 15 ): 3813 - 3817 . DOI:10.1016/j.tet.2005.01.133http://doi.org/10.1016/j.tet.2005.01.133 .
Hachiya S, Asai K, Konishi G I. Tetrahedron Lett , 2013 . 54 ( 14 ): 1839 - 1841 . DOI:10.1016/j.tetlet.2013.01.096http://doi.org/10.1016/j.tetlet.2013.01.096 .
Whittle M, Gillet V J, Willett P, Alex A, Loesel J. J Chem Inf Comput Sci , 2004 . 44 ( 5 ): 1840 - 1848 . DOI:10.1021/ci049867xhttp://doi.org/10.1021/ci049867x .
Wang F, Zhang J, Huang J X, Yan H, Huang F R, Du L. Polym Bull , 2006 . 56 ( 1 ): 19 - 26 . DOI:10.1007/s00289-005-0464-4http://doi.org/10.1007/s00289-005-0464-4 .
Fang X, Xie X Q, Simone C D, Stevens M P, Scola D A. Macromolecules , 2000 . 33 ( 5 ): 1671 - 1681 . DOI:10.1021/ma991197mhttp://doi.org/10.1021/ma991197m .
Kuroki S, Okita K, Kakigano T, Ishikawa J, Itoh M. Macromolecules , 1998 . 31 ( 9 ): 2804 - 2808 . DOI:10.1021/ma971133ghttp://doi.org/10.1021/ma971133g .
Wang F, Xu J F, Zhang J, Huang F R, Shen Y J, Du L. Polym Int , 2006 . 55 ( 9 ): 1063 - 1068 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126 .
0
浏览量
44
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构