浏览全部资源
扫码关注微信
1.华东理工大学 化学工程联合国家重点实验室 上海 200237
2.华南农业大学材料与能源学院 广州 510642
E-mail: rhcheng@ecust.edu.cn Rui-hua Cheng, E-mail: rhcheng@ecust.edu.cn
纸质出版日期:2019-12,
网络出版日期:2019-6-6,
收稿日期:2019-4-17,
修回日期:2019-5-15,
扫 描 看 全 文
李海强, 汪婧怡, 武莉, 刘威, 程瑞华, 刘柏平. 氨基甲酰基季铵盐双功能催化剂催化丙交酯开环聚合研究[J]. 高分子学报, 2019,50(12):1290-1297.
Hai-qiang Li, Jing-yi Wang, Li Wu, Wei Liu, Rui-hua Cheng, Bo-ping Liu. Ring-opening Polymerization of Lactide by Bifunctional Organocatalyst at Ambient Conditions[J]. Acta Polymerica Sinica, 2019,50(12):1290-1297.
李海强, 汪婧怡, 武莉, 刘威, 程瑞华, 刘柏平. 氨基甲酰基季铵盐双功能催化剂催化丙交酯开环聚合研究[J]. 高分子学报, 2019,50(12):1290-1297. DOI: 10.11777/j.issn1000-3304.2019.19080.
Hai-qiang Li, Jing-yi Wang, Li Wu, Wei Liu, Rui-hua Cheng, Bo-ping Liu. Ring-opening Polymerization of Lactide by Bifunctional Organocatalyst at Ambient Conditions[J]. Acta Polymerica Sinica, 2019,50(12):1290-1297. DOI: 10.11777/j.issn1000-3304.2019.19080.
采用3种氨基甲酰基季铵盐双功能有机小分子催化剂考察了丙交酯的溶液聚合与本体聚合. 催化剂由二甲酰亚胺和季铵盐在回流条件下以定量收率制备,原料廉价易得,在空气中性质稳定且毒性低,可在温和无惰性气体保护条件下催化丙交酯的开环聚合. 在以甲苯为溶剂的聚合条件下,
a
催化剂(2-氨基甲酰基苯甲酸四乙基铵)常温常压下反应1 h,丙交酯转化率为42.7%. 由正交法得出的最佳聚合条件下,丙交酯/
a
催化剂/叔丁醇钠的摩尔比为200/10/1,75 °C,反应4 h后,丙交酯转化率为88.5%,产物聚乳酸的分子量为8.03 kg·mol
−1
. 采用本体聚合的方法,3种催化剂均可在无引发剂的条件下合成聚乳酸. 通过调控引发剂、金属醇盐及温度条件合成的聚乳酸,在150 °C下丙交酯转化率达95.7%. 几种方式所得产物熔融温度在130 ~ 134 °C之间. 产物经MALDI-TOF-MS表征,证实氨基甲酰基季铵盐催化剂具有协同双重活化单体和引发剂/链端的性能,双功能团位于同一结构中.
Ring-opening polymerization of lactide (LA) is one of the most important techniques to synthesize poly(lactic acid) (PLA). In this work
a series of organocatalysts have been prepared for both solution polymerization and bulk polymerization of LA at ambient conditions. Derived from the facile reactions between phthalimide and quaternaryammonium salt
these catalysts are inexpensive and stable in air. Tetraethylammonium 2-aminobenzoate (TEACB) (catalyst
a
) was first applied to polymerize LLA in toluene solvent
and a conversion of 42.7% was achieved after the reaction proceeded at 25 °C for 1 h. Orthogonal experiments suggested that the optimum condition was reaction temperature of 75 °C
reaction time of 4 h
and the molar ratio of lactide:catalyst
a
:alkoxide equal to 200:10:1
which afforded PLA product with molecular weight of 8.03 kg·mol
–1
polydispersity index (PDI) of 1.53
and a high conversion of 88.5%. Next
bulk polymerization of LLA was carried out at different temperatures to explore the effects of initiator
alcohol salt
reaction time
and the molar ratio of lactide:catalyst:alkoxide. The catalytic activity of the catalysts depended largely on their chemical structures. Under the same reaction temperature
catalyst
b
with larger cation part led to a higher conversion; meanwhile
catalysts
a
and
b
with phenyl group in the anionic part were more active than catalyst
c
bearing an aliphatic group although the latter produced PLA with higher molecular weight and narrower molecular weight distribution. The catalysts developed in this study worked well in the absence of alkoxide
whilst alkoxide and alcohol could improve the performance of the catalyst system. LLA polymerizations could be conveniently performed under atmospheric conditions and increasing temperature resulted in PLA products with higher molecular weight and narrower molecular weight distribution. The conversion reached up to 95.7% after polymerization at 150 °C
in which the
M
n
and PDI of the PLA product equaled 2.57 kg·mol
–1
and 1.24
respectively. DSC measurements indicated that PLAs obtained
via
varied methods displayed similar melting temperatures in the range of 130 – 134 °C. Further
cooperative dual activation of both the monomer and the initiator/chain-end could be confirmed based on MALDI-TOF-MS analyses. This novel catalyst system possesses specific monocomponent hetero-bifunction with H-bonding capability.
丙交酯双功能有机小分子催化剂开环聚合聚乳酸
LactideBifunctional organocatalystRing-opening polymerizationPoly(lactic acid)
Quilescarrillo L, Blanesmartínez M M, Montanes N, Fenollar O, Torresginer S, Balart R. Eur Polym J , 2018 . 98 402 - 410 . DOI:10.1016/j.eurpolymj.2017.11.039http://doi.org/10.1016/j.eurpolymj.2017.11.039 .
Chen Xianghui(陈祥辉), Huang Hanxiong(黄汉雄). Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1331 - 1338 . DOI:10.11777/j.issn1000-3304.2017.17003http://doi.org/10.11777/j.issn1000-3304.2017.17003 .
Chen L, Hu K, Sun S T, Jiang H, Huang D, Zhang K Y, Pan L, Li Y S. Chinese J Polym Sci , 2018 . 36 ( 12 ): 1342 - 1352 . DOI:10.1007/s10118-018-2143-6http://doi.org/10.1007/s10118-018-2143-6 .
Dalmoro A, Barba A A, Lamberti M, Mazzeo M, Venditto V, Lamberti G. J Mater Sci , 2014 . 49 ( 17 ): 5986 - 5996 . DOI:10.1007/s10853-014-8317-xhttp://doi.org/10.1007/s10853-014-8317-x .
Nofar M, Park C B. Prog Polym Sci , 2014 . 39 ( 10 ): 1721 - 1741 . DOI:10.1016/j.progpolymsci.2014.04.001http://doi.org/10.1016/j.progpolymsci.2014.04.001 .
Hu C Y, Duan R L, Yang J W, Dong S J, Sun Z Q, Pang X, Wang X H, Chen X S. Chinese J Polym Sci , 2018 . 36 ( 10 ): 1123 - 1128 . DOI:10.1007/s10118-018-2129-4http://doi.org/10.1007/s10118-018-2129-4 .
Champouret Y, Visseaux M. Polym Chem-UK , 2018 . 9 2517 - 2531 . DOI:10.1039/C8PY00310Fhttp://doi.org/10.1039/C8PY00310F .
Wu D, Lv Y, Guo R, Li J H, Habadati A, Lu B, Wang H Y, Wei Z. Macromol Res , 2017 . 25 ( 11 ): 1070 - 1075 . DOI:10.1007/s13233-017-5148-zhttp://doi.org/10.1007/s13233-017-5148-z .
Hu J, Kan C, Ma H. Inorg Chem , 2018 . 57 ( 17 ): 11240 - 11251 . DOI:10.1021/acs.inorgchem.8b01839http://doi.org/10.1021/acs.inorgchem.8b01839 .
Hu S, Zhao J, Zhang G, Schlaad H. Prog Polym Sci , 2017 . 74 34 - 77 . DOI:10.1016/j.progpolymsci.2017.07.002http://doi.org/10.1016/j.progpolymsci.2017.07.002 .
Li H, Ai B R, Hong M. Chinese J Polym Sci , 2017 . 36 ( 2 ): 231 - 236 . DOI:10.1007/s10118-018-2071-5http://doi.org/10.1007/s10118-018-2071-5 .
Wang Ziyu(王子羽), He Wenwen(何文文), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 786 - 796 . DOI:10.11777/j.issn1000-3304.2018.18036http://doi.org/10.11777/j.issn1000-3304.2018.18036 .
Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem , 2016 . 8 ( 11 ): 1047 - 1053 . DOI:10.1038/nchem.2574http://doi.org/10.1038/nchem.2574 .
Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J Am Chem Soc , 2019 . 141 281 - 289 . DOI:10.1021/jacs.8b09739http://doi.org/10.1021/jacs.8b09739 .
Zhang C J, Duan H Y, Hu L F, Zhang C H, Zhang X H. ChemSusChem , 2018 . 11 ( 24 ): 4209 - 4213 . DOI:10.1002/cssc.v11.24http://doi.org/10.1002/cssc.v11.24 .
Nederberg F, Connor E F, Möller M. Angew Chem Int Ed , 2001 . 40 ( 14 ): 2712 - 2715 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Mezzasalma L, Dove A P, Coulembier O. Eur Polym J , 2017 . 95 628 - 634 . DOI:10.1016/j.eurpolymj.2017.05.013http://doi.org/10.1016/j.eurpolymj.2017.05.013 .
Nachtergael A, Coulembier O, Dubois P, Helvenstein M, Duez P, Blankert B, Mespouille L. Biomacromolecules , 2015 . 16 ( 2 ): 507 - 514 . DOI:10.1021/bm5015443http://doi.org/10.1021/bm5015443 .
Dove A P, Pratt R C, Lohmeijer B G, Waymouth R M, Hedrick J L. J Am Chem Soc , 2005 . 127 ( 40 ): 13798 - 13799 . DOI:10.1021/ja0543346http://doi.org/10.1021/ja0543346 .
Coady D J, Kazuki F, Horn H W, Rice J E, Hedrick J L. Chem Commun , 2011 . 47 ( 11 ): 3105 - 3107 . DOI:10.1039/c0cc03987jhttp://doi.org/10.1039/c0cc03987j .
Rostami A, Sadeh E, Ahmadi S. J Polym Sci, Part A: Polym Chem , 2017 . 55 ( 15 ): 2483 - 2493 . DOI:10.1002/pola.v55.15http://doi.org/10.1002/pola.v55.15 .
Yarhosseini M, Javanshir S, Dekamin M G, Farhadnia M. Monatsh Chem , 2016 . 147 ( 10 ): 1779 - 1787 . DOI:10.1007/s00706-016-1666-1http://doi.org/10.1007/s00706-016-1666-1 .
Dekamin M G, Sagheb-Asl S, Reza Naimi-Jamal M. Tetrahedron Lett , 2009 . 50 ( 28 ): 4063 - 4066 . DOI:10.1016/j.tetlet.2009.04.090http://doi.org/10.1016/j.tetlet.2009.04.090 .
Pratt R C, Lohmeijer B G G, Long D A, Lundberg P N P, Dove A P, Li H B, Wade C G, Waymouth R M, Hedrick J L. Macromolecules , 2017 . 39 ( 23 ): 7863 - 7871.
Kan Z, Luo W, Shi T, Wei C, Han B, Zheng D, Liu S. Front Chem , 2018 . 6 547 - 563 . DOI:10.3389/fchem.2018.00547http://doi.org/10.3389/fchem.2018.00547 .
Pan X, Liu Z, Cheng R, Jin D, He X, Liu B. J Organomet Chem , 2014 . 753 63 - 71 . DOI:10.1016/j.jorganchem.2013.12.001http://doi.org/10.1016/j.jorganchem.2013.12.001 .
0
浏览量
34
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构