浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海市先进聚合物重点实验室 上海 200237
E-mail: lq_wang@ecust.edu.cn Li-quan Wang, E-mail: lq_wang@ecust.edu.cn
E-mail: jlin@ecust.edu.cn Jia-ping Lin, E-mail: jlin@ecust.edu.cn
纸质出版日期:2019-12,
网络出版日期:2019-7-2,
收稿日期:2019-5-17,
修回日期:2019-6-2,
扫 描 看 全 文
周恩斌, 王立权, 林嘉平, 朱峻立, 杜磊, 邓诗峰, 顾佳斌, 张良顺. 低黏度含硅芳炔树脂的材料基因组设计及理论模拟验证[J]. 高分子学报, 2019,50(12):1322-1330.
En-bin Zhou, Li-quan Wang, Jia-ping Lin, Jun-li Zhu, Lei Du, Shi-feng Deng, Jia-bin Gu, Liang-shun Zhang. Design of Low-viscosity Silicon-containing Arylacetylene Resins by a Combination Screening Method[J]. Acta Polymerica Sinica, 2019,50(12):1322-1330.
周恩斌, 王立权, 林嘉平, 朱峻立, 杜磊, 邓诗峰, 顾佳斌, 张良顺. 低黏度含硅芳炔树脂的材料基因组设计及理论模拟验证[J]. 高分子学报, 2019,50(12):1322-1330. DOI: 10.11777/j.issn1000-3304.2019.19104.
En-bin Zhou, Li-quan Wang, Jia-ping Lin, Jun-li Zhu, Lei Du, Shi-feng Deng, Jia-bin Gu, Liang-shun Zhang. Design of Low-viscosity Silicon-containing Arylacetylene Resins by a Combination Screening Method[J]. Acta Polymerica Sinica, 2019,50(12):1322-1330. DOI: 10.11777/j.issn1000-3304.2019.19104.
构建了一种材料基因组方法,并运用该方法设计筛选出了一类符合低黏度特性的含硅芳炔树脂. 首先,将含硅芳炔树脂中的含硅基团作为“基因”,设计了一系列新型树脂,并通过分子连接指数法计算黏度和热分解温度等,筛选得到了两类黏度低且热性能良好的树脂. 然后,利用分子动力学方法研究了其流变性能和热性能,验证了设计结果. 在此基础上,将优选树脂作为共混物,用以改善硅氢芳炔树脂的加工性能,并研究了共混体系的黏度、热性能和力学性能.
It is challenging to improve the processing performance of silicon-containing arylacetylene resins while ensuring their excellent thermal properties. In this work
we presented a combination screening method for designing low-viscosity silicon-containing arylacetylene resins. We first defined the dichlorosilane as the gene for combination in terms of the chemical synthesis routes. The genes are combined with alkynyl benzene to generate a series of candidate resins. Then the viscosity
density
and thermal decomposition temperature of the candidate resins were calculated by molecular connection index method. Two optimal resins (ESA-e and ESA-2e) with higher index were screened through defining an index––a ratio of thermal decomposition temperature to viscosity. To validate the screened results
molecular dynamics simulation was used to evaluate the properties of the two optimal resins. In addition
a comparision between the optimal resins and a tranditional resin (PSA-H) were made. It was found that the viscosity of the optimal resins is lower than that of PSA-H and that of ESA-2e is the lowest. However
the glass transition temperature of the optimal resins decreased. To improve both the thermal properties and processing performance of the resins
the optimal resins were blended with PSA-H. The viscosity
thermal properties
and mechanical properties of the blends were examined by MD simulation. The results suggested that both the thermal properties and processing performance of the resins can be balanced
via
blending. The work provided a rapid method for the design and development of new resins. Moreover
the combination screening method can be generalized to the design of other advanced polymers.
材料基因组分子动力学分子连接指数含硅芳炔树脂共混改性
Materials genomeMolecular dynamicsMolecular connection indexSilicon-containing arylacetylene resinBlend modification
Itoh M, Inoue K, Iwata K, Mitsuzuka M, Kakigano T. Macromolecules , 1997 . 30 ( 4 ): 694 - 701 . DOI:10.1021/ma961081fhttp://doi.org/10.1021/ma961081f .
Itoh M, Iwata K, Ishikawa J I, Sukawa H, Kimura H, Okita K. J Polym Sci, Part A: Polym Chem , 2001 . 39 ( 15 ): 2658 - 2669 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Jiang Huan(姜欢), Deng Shifeng(邓诗峰), Ruan Xiangzheng(阮湘政). Polymer Materials Science & Engineering(高分子材料科学与工程) , 2017 . 33 ( 11 ): 18 - 21.
Gao Jinmiao(高金淼), Qi Huimin(齐会民), Zhang Jian(张健), Huang Farong(黄发荣), Du Lei(杜磊). New Chemical Materials(化工新型材料) , 2008 . 36 ( 12 ): 45 - 47 . DOI:10.3969/j.issn.1006-3536.2008.12.015http://doi.org/10.3969/j.issn.1006-3536.2008.12.015 .
Gao Fei(高飞), Wang Fan(王帆), Zhang Lingling(张玲玲). Journal of Wuhan University of Technology(武汉理工大学学报) , 2009 . 31 ( 21 ): 9 - 12 . DOI:10.3963/j.issn.1671-4431.2009.21.003http://doi.org/10.3963/j.issn.1671-4431.2009.21.003 .
Du Fengke(杜峰可), Yuan Qiaolong(袁荞龙), Huang Farong(黄发荣). Acta Polymerica Sinica(高分子学报) , 2018 . ( 3 ): 410 - 418 . DOI:10.11777/j.issn1000-3304.2017.17099http://doi.org/10.11777/j.issn1000-3304.2017.17099 .
Wang Shiheng(王世恒), Zhang Wen(张雯), Guo Chaoxia(郭朝霞). Acta Polymerica Sinica(高分子学报) , 2017 . 8 ( 8 ): 1366 - 1373 . DOI:10.11777/j.issn1000-3304.2017.16364http://doi.org/10.11777/j.issn1000-3304.2017.16364 .
Chu Ming(楚明), Zhu Junli(朱峻立), Wang Liquan(王立权), Lin Jiaping(林嘉平), Du Lei(杜磊), Cai Chunhua(蔡春华). Acta Polymerica Sinica(高分子学报). 2019, 50(11), 1211-1219
Randic M, Razinger M. J Chem Inf Model , 1995 . 35 ( 1 ): 140 - 147 . DOI:10.1021/ci00023a021http://doi.org/10.1021/ci00023a021 .
Hall L H, Mohney B, Kier L B. J Chem Inf Model , 1991 . 31 ( 1 ): 76 - 82 . DOI:10.1021/ci00001a012http://doi.org/10.1021/ci00001a012 .
Kier L B, Hall L H, Frazer J W. J Math Chem , 1991 . 7 ( 1 ): 229 - 241 . DOI:10.1007/BF01200825http://doi.org/10.1007/BF01200825 .
Mijović J, Zhang H. J Phys Chem B , 2004 . 108 ( 108 ): 2557 - 2563 . DOI:10.1021/jp036181jhttp://doi.org/10.1021/jp036181j .
Car R, Parrinello M. Phys Rev Lett , 1985 . 55 ( 22 ): 2471 DOI:10.1103/PhysRevLett.55.2471http://doi.org/10.1103/PhysRevLett.55.2471 .
Ding L, Davidchack R L, Pan J. J Mech Behav Biomed Mater , 2012 . 5 ( 1 ): 224 - 230 . DOI:10.1016/j.jmbbm.2011.09.002http://doi.org/10.1016/j.jmbbm.2011.09.002 .
Komarov P V, Yu-Tsung C, Shih-Ming C, Khalatur P G, Reineker P. Macromolecules , 2007 . 40 ( 22 ): 8104 - 8113 . DOI:10.1021/ma070702+http://doi.org/10.1021/ma070702+ .
Lees A W, Edwards S F. J Phys C: Solid State Phys , 1972 . 5 ( 15 ): 1921 - 1928 . DOI:10.1088/0022-3719/5/15/006http://doi.org/10.1088/0022-3719/5/15/006 .
Xu P, Lin J, Zhang L. J Phys Chem C , 2017 . 121 ( 50 ): 28194 - 28203 . DOI:10.1021/acs.jpcc.7b10455http://doi.org/10.1021/acs.jpcc.7b10455 .
Andersen H C. J Chem Phys , 1980 . 72 ( 4 ): 2384 - 2393 . DOI:10.1063/1.439486http://doi.org/10.1063/1.439486 .
Tack J L, Ford D M. J Mol Graph Model , 2008 . 26 ( 8 ): 1269 - 1275 . DOI:10.1016/j.jmgm.2007.12.001http://doi.org/10.1016/j.jmgm.2007.12.001 .
Yan T, Burnham C J, Pópolo M G D, Voth G A. J Phys Chem C , 2016 . 108 ( 32 ): 11877 - 11881.
Xu Z, Lin J, Wang L Tian X. Polym Chem , 2016 . 7 3783 - 3811 . DOI:10.1039/C6PY00535Ghttp://doi.org/10.1039/C6PY00535G .
Zhang Q, Lin J, Wang L, Xu Z. Prog Polym Sci , 2017 . 75 1 - 30 . DOI:10.1016/j.progpolymsci.2017.04.003http://doi.org/10.1016/j.progpolymsci.2017.04.003 .
Jiang T, Lin J, Wang L. Langmuir , 2013 . 29 12298 - 12306 . DOI:10.1021/la403098phttp://doi.org/10.1021/la403098p .
Zhu X, Wang L, Lin J. Macromolecules , 2011 . 44 8314 - 8323 . DOI:10.1021/ma2014035http://doi.org/10.1021/ma2014035 .
Makov G, Payne M C. Phys Rev B , 1995 . 51 ( 7 ): 4014 - 4024 . DOI:10.1103/PhysRevB.51.4014http://doi.org/10.1103/PhysRevB.51.4014 .
Makov G, Shah R, Payne M C. Phys Rev B , 1996 . 53 ( 23 ): 15513 - 11526 . DOI:10.1103/PhysRevB.53.15513http://doi.org/10.1103/PhysRevB.53.15513 .
Leeuw S W D, Perram J W, Smith E R. Proc R Soc A-Math Phys Eng Sci , 1980 . A ( 2 ): 27 - 56.
Verstraete F, Porras D, Cirac J I. Phys Rev Lett , 2004 . 93 ( 22 ): 227205 - 227215 . DOI:10.1103/PhysRevLett.93.227205http://doi.org/10.1103/PhysRevLett.93.227205 .
Sun H, Ren P, Fried J R. Comput Theor Polym Sci , 1998 . 8 ( 1-2 ): 229 - 246 . DOI:10.1016/S1089-3156(98)00042-7http://doi.org/10.1016/S1089-3156(98)00042-7 .
Walker M W, Orin D E. J Dyn Syst Meas Control , 1982 . 104 ( 3 ): 205 - 211 . DOI:10.1115/1.3139699http://doi.org/10.1115/1.3139699 .
Fanourgakis G S, Medina J S, Prosmiti R. J Phys Chem A , 2012 . 116 ( 10 ): 2564 - 2572 . DOI:10.1021/jp211952yhttp://doi.org/10.1021/jp211952y .
Hoover W G, Evans D J, Hickman R B. Phys Rev A , 1980 . 22 ( 4 ): 1690 - 1697 . DOI:10.1103/PhysRevA.22.1690http://doi.org/10.1103/PhysRevA.22.1690 .
Theodorou D N, Suter U W. Macromolecules , 1985 . 18 ( 7 ): 1467 - 1478 . DOI:10.1021/ma00149a018http://doi.org/10.1021/ma00149a018 .
Theodorou D N, Suter U W. Macromolecules , 1986 . 19 ( 1 ): 139 - 154 . DOI:10.1021/ma00155a022http://doi.org/10.1021/ma00155a022 .
Zhang Lingling(张玲玲), Gao Fei(高飞), Zhou Wei(周围), Zhang Jian(张健), Huang Farong(黄发荣), Du Lei(杜磊). The Chinese Journal of Process Engineering(过程工程学报) , 2009 . 9 ( 3 ): 574 - 579 . DOI:10.3321/j.issn:1009-606X.2009.03.028http://doi.org/10.3321/j.issn:1009-606X.2009.03.028 .
Zhou Wei(周围), Zhang Jian(张健), Yi Guoguang(尹国光), Huang Farong(黄发荣). Petrochemical Technology(石油化工) , 2007 . 36 ( 6 ): 618 - 622 . DOI:10.3321/j.issn:1000-8144.2007.06.016http://doi.org/10.3321/j.issn:1000-8144.2007.06.016 .
Zhao Jicheng(赵继成). Chinese Journal of Nature(自然杂志) , 2014 . 36 ( 2 ): 89 - 104.
Xiao Ruijuan(肖睿娟), Li Hong(李泓), Chen Liquan (陈立泉). Acta Physica Sinica(物理学报) , 2018 . 67 ( 12 ): 128801 - 128801 . DOI:10.7498/aps.67.128801http://doi.org/10.7498/aps.67.128801 .
0
浏览量
43
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构