浏览全部资源
扫码关注微信
1.济南大学化学化工学院 济南 250022
2.德州学院化学化工学院 德州 253023
E-mail: chm_liss@ujn.edu.cn Shu-sheng Li, E-mail: chm_liss@ujn.edu.cn
纸质出版日期:2019-12,
网络出版日期:2019-9-27,
收稿日期:2019-7-12,
修回日期:2019-8-22,
扫 描 看 全 文
董晓晶, 曹红岩, 姜绪宝, 孔祥正, 李树生. 多响应性甲氧基聚乙二醇丙烯酸酯-甲基丙烯酸共聚物的相变及荧光发射[J]. 高分子学报, 2019,50(12):1314-1321.
Xiao-jing Dong, Hong-yan Cao, Xu-bao Jiang, Xiang-zheng Kong, Shu-sheng Li. Phase Transition and Fluorescence Emission Characteristics ofMulti-responsive Copolymer of Oligo(ethylene glycol)Methyl Ether Acrylate and Methylacrylic Acid[J]. Acta Polymerica Sinica, 2019,50(12):1314-1321.
董晓晶, 曹红岩, 姜绪宝, 孔祥正, 李树生. 多响应性甲氧基聚乙二醇丙烯酸酯-甲基丙烯酸共聚物的相变及荧光发射[J]. 高分子学报, 2019,50(12):1314-1321. DOI: 10.11777/j.issn1000-3304.2019.19106.
Xiao-jing Dong, Hong-yan Cao, Xu-bao Jiang, Xiang-zheng Kong, Shu-sheng Li. Phase Transition and Fluorescence Emission Characteristics ofMulti-responsive Copolymer of Oligo(ethylene glycol)Methyl Ether Acrylate and Methylacrylic Acid[J]. Acta Polymerica Sinica, 2019,50(12):1314-1321. DOI: 10.11777/j.issn1000-3304.2019.19106.
通过甲氧基聚乙二醇丙烯酸酯(OEGA)与甲基丙烯酸(MAA)自由基共聚制备了共聚物P(OEGA-MAA). 通过氢核磁共振谱(
1
H-NMR)及凝胶渗透色谱(GPC)对其结构进行了表征,对其相变及荧光性能进行测试,结果表明P(OEGA-MAA)对温度、pH及盐浓度具有响应性,并且在紫外光照射下发出肉眼可见的蓝色荧光. 在此基础上,进一步研究了单体配比、pH及盐浓度等因素对其低临界溶解温度(LCST)的影响,表征了该聚合物受外界刺激时的荧光变化,揭示了其荧光性质与刺激响应时相分离过程的内在联系,提出了聚乙二醇氧原子间簇集诱导是该聚合物系的主要发光机理. 本研究对了解PEG基刺激响应聚合物的荧光发射机理及拓展其实际应用均具有重要的意义.
Multi-responsive polymers
with cluster-induced luminescence (CIE) featured by non-conjugated chromophores
have attracted great attention in recent years
and the relevant studies have been focused mainly on the polymers with aliphatic amines and carbonyl groups. Although the CIE behaviors of ethylene glycol-based polymers have been previously reported
studies that correlate their luminescent properties with their stimuli-responsiveness are rarely available. In this paper
P(OEGA-MAA)
a copolymer responsive to temperature
pH and salt
was prepared by free radical copolymerization of oligo(ethylene glycol) methyl ether acrylate (OEGA) with methylacrylic acid (MAA) in ethanol. The structure of P(OEGA-MAA) was characterized by
1
H-NMR and its molecular weight was determined by GPC. The evolution of light transmittance of the water solution of P(OEGA-MAA) with temperature was measured under different conditions and its fluorescence performance was characterized. The results show that P(OEGA-MAA) not only has responsive to temperature
pH and salt
but also emits visible blue fluorescence under UV. Effects of the polymer composition
pH and salt concentration on the lower critical solution temperature (LCST) and fluorescence properties are studied. And the relationship between fluorescence properties and phase transition process is also describled. As OEGA content decreased in the polymer
the LCST in its aqueous solution (2.0 mg/mL
pH=1) decreased
and the corresponding fluorescence intensity increased first with OEGA content up to 33 mol% (OEGA/MAA = 3.3/6.7
sample
P7
)
where it reached a maximum
followed by a decrease with further decrease in OEGA. Effects of pH and NaCl concentration were also studied with
P7
as an example. With increased pH in the aqueous solution (2.0 mg/mL) of
P7
the LCST increased and the fluorescence intensity decreased; With the increase in NaCl concentration
the LCST decreased
while no obverious change was detected for the fluorescence intensity. Furthermore
when the polymer concentration was increased
the LCST decreased
and the fluorescence intensity increased obviously. All the results indicate that the fluorescence emission was caused by aggregation of oxygen atoms in polymer segments. This study provides therefore a novel type of materials for potential applications in biomedical fields
and it is also of great significance for understanding the luminescence mechanism of PEG-based stimuli-responsive polymers.
簇集诱导发光聚乙二醇-甲基丙烯酸共聚物多响应性聚合物低临界溶解温度荧光发射
Cluster-induced luminescencePoly[oligo(ethylene glycol) methyl ether acrylate-co-methylacrylic acid]Multi-responsive polymersLower critical solution temperatureFluorescence emission
Yamada A, Hiruta Y, Wang J, Ayano E, Kanazawa H. Biomacromolecules , 2015 . 16 2356 - 2362 . DOI:10.1021/acs.biomac.5b00591http://doi.org/10.1021/acs.biomac.5b00591 .
Wang H, Ke F, Mararenko A, Wei Z, Banerjee P, Zhou S. Nanoscale , 2014 . 6 7443 - 7452 . DOI:10.1039/C4NR01030Bhttp://doi.org/10.1039/C4NR01030B .
Park C H, Lee S, Pornnoppadol G, Nam Y S, Kim S H, Kim B J. ACS Appl Mater Interfaces , 2018 . 10 9023 - 9031 . DOI:10.1021/acsami.7b19468http://doi.org/10.1021/acsami.7b19468 .
Kim T H, Swager T M. Angew Chem Int Ed , 2003 . 42 4803 - 4806 . DOI:10.1002/anie.200352075http://doi.org/10.1002/anie.200352075 .
Wu W, Huang F, Pan S, Mu W, Meng X, Yang H, Xu Z, Ragauskas A J, Deng Y. J Mater Chem A , 2015 . 3 1995 - 2005 . DOI:10.1039/C4TA04761Chttp://doi.org/10.1039/C4TA04761C .
Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, Wang H. J Mater Chem C , 2017 . 5 8082 - 8090 . DOI:10.1039/C7TC02381Bhttp://doi.org/10.1039/C7TC02381B .
Taniguchi R, Yamada T, Sada K, Kokado K. Macromolecules , 2014 . 47 6382 - 6388 . DOI:10.1021/ma501198dhttp://doi.org/10.1021/ma501198d .
Lin J, Zeng X, Xiao Y, Tang L, Nong J, Liu Y, Zhou H, Ding B, Xu F, Tong H, Deng Z, Hong X. Chem Sci , 2019 . 10 1219 - 1226 . DOI:10.1039/C8SC04363Ahttp://doi.org/10.1039/C8SC04363A .
Chen M, Li L, Wu H, Pan L, Li S, He B, Zhang H, Sun J Z, Qin A, Tang B Z. ACS Appl Mater Interfaces , 2018 . 10 12181 - 12188 . DOI:10.1021/acsami.8b03178http://doi.org/10.1021/acsami.8b03178 .
Chai J, Wu Y, Yang B, Liu B. J Mater Chem C , 2018 . 6 4057 - 4064 . DOI:10.1039/C8TC00509Ehttp://doi.org/10.1039/C8TC00509E .
Wang X, Li J, Yan Q, Chen Y, Fan A, Wang Z, Zhao Y. Macromol Biosci , 2018 . 18 1700339 DOI:10.1002/mabi.201700339http://doi.org/10.1002/mabi.201700339 .
Ekbote A, Han S H, Jadhav T, Mobin S M, Lee J Y, Misra R. J Mater Chem C , 2018 . 6 2077 - 2087 . DOI:10.1039/C7TC05450Ehttp://doi.org/10.1039/C7TC05450E .
Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Polym Chem , 2017 . 8 4746 - 4751 . DOI:10.1039/C7PY00884Hhttp://doi.org/10.1039/C7PY00884H .
Lin Y K, Fang J Y, Wang S W, Lee R S. React Funct Polym , 2018 . 130 29 - 42 . DOI:10.1016/j.reactfunctpolym.2018.05.008http://doi.org/10.1016/j.reactfunctpolym.2018.05.008 .
Saghebasl S, Davaran S, Rahbarghazi R, Montaseri A, Salehi R, Ramazani A. J Biomat Sci-Polym Ed , 2018 . 29 1185 - 1206 . DOI:10.1080/09205063.2018.1447627http://doi.org/10.1080/09205063.2018.1447627 .
Saeki S, Kuwahara N, Nakata M, Kaneko M. Polymer , 1976 . 17 685 - 689 . DOI:10.1016/0032-3861(76)90208-1http://doi.org/10.1016/0032-3861(76)90208-1 .
Cao H, Wang Q, Li M, Chen Z. Colloid Polym Sci , 2015 . 293 441 - 451 . DOI:10.1007/s00396-014-3422-6http://doi.org/10.1007/s00396-014-3422-6 .
Sun X, Zebibula A, Dong X, Zhang G, Zhang D, Qian J, He S. ACS Appl Mater Interfaces , 2018 . 10 25037 - 25046 . DOI:10.1021/acsami.8b05546http://doi.org/10.1021/acsami.8b05546 .
Liu Y, Mao L, Liu X, Liu M, Xu D, Jiang R, Deng F, Li Y, Zhang X, Wei Y. Mater Sci Eng C , 2017 . 79 590 - 595 . DOI:10.1016/j.msec.2017.05.108http://doi.org/10.1016/j.msec.2017.05.108 .
Long Z, Liu M, Jiang R, Wan Q, Mao L, Wan Y, Deng F, Zhang X, Wei Y. Chem Eng J , 2017 . 308 527 - 534 . DOI:10.1016/j.cej.2016.09.053http://doi.org/10.1016/j.cej.2016.09.053 .
Kafer F, Liu F, Stahlschmidt U, Jérôme V, Freitag R, Karg M, Agarwa S. Langmuir , 2015 . 31 8940 - 8946 . DOI:10.1021/acs.langmuir.5b02006http://doi.org/10.1021/acs.langmuir.5b02006 .
Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z. Macromol Rapid Commun , 2018 . 39 1800528 DOI:10.1002/marc.201800528http://doi.org/10.1002/marc.201800528 .
Miao X, Liu T, Zhang C, Geng X, Meng Y, Li X. Phys Chem Chem Phys , 2016 . 18 4295 - 4299 . DOI:10.1039/C5CP07134Hhttp://doi.org/10.1039/C5CP07134H .
Pucci A, Rausa R, Ciardelli F. Macromol Chem Phys , 2008 . 209 900 - 906 . DOI:10.1002/macp.200700581http://doi.org/10.1002/macp.200700581 .
Lutz J F, Weichenhan K, Akdemirö, Hoth A. Macromolecules , 2007 . 40 2503 - 2508 . DOI:10.1021/ma062925qhttp://doi.org/10.1021/ma062925q .
Can A, Zhang Q, Rudolph T, Schacher F, Gohy J F, Schubert U, Richard H. Eur Polym J , 2015 . 69 460 - 471 . DOI:10.1016/j.eurpolymj.2015.04.008http://doi.org/10.1016/j.eurpolymj.2015.04.008 .
Luzon M, Boyer C, Peinado C, Corrales T, Whittaker M, Tao L, Davis T P. J Polym Sci, Part A: Polym Chem , 2010 . 48 2783 - 2792 . DOI:10.1002/pola.24027http://doi.org/10.1002/pola.24027 .
Lu H, Feng L, Li S, Zhang J, Lu H, Feng S. Macromolecules , 2015 . 48 476 - 482 . DOI:10.1021/ma502352xhttp://doi.org/10.1021/ma502352x .
Guan X, Meng L, Jin Q, Lu B, Chen Y, Li Z, Wang L, Lai S, Lei Z. Macromol Mater Eng , 2018 . 303 1700553 DOI:10.1002/mame.201700553http://doi.org/10.1002/mame.201700553 .
Huang H, Hou L, Zhu F, Li J, Xu M. RSC Adv , 2018 . 8 9334 - 9343 . DOI:10.1039/C8RA01018Hhttp://doi.org/10.1039/C8RA01018H .
Cao H, Guo F, Chen Z, Kong X Z. Nanoscale Res Lett , 2018 . 13 209 - 218 . DOI:10.1186/s11671-018-2610-6http://doi.org/10.1186/s11671-018-2610-6 .
Park T G, Hoffman A. Macromolecules , 1993 . 26 5045 - 5048 . DOI:10.1021/ma00071a010http://doi.org/10.1021/ma00071a010 .
0
浏览量
23
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构