浏览全部资源
扫码关注微信
1.天津大学化工学院 天津 300350
2.南开大学材料科学与工程学院 天津 300350
3.天津化学化工协同创新中心 天津 300072
E-mail: jialiang.xu@nankai.edu.cn
E-mail: baozhang@tju.edu.cn
纸质出版日期:2019-12,
网络出版日期:2019-11-12,
收稿日期:2019-8-14,
修回日期:2019-9-3,
扫 描 看 全 文
张嘉宾, 徐加良, 张宝, 冯亚青. 石墨炔及修饰石墨炔在光电能源领域的应用[J]. 高分子学报, 2019,50(12):1239-1252.
Jia-bin Zhang, Jia-liang Xu, Bao Zhang, Ya-qing Feng. Graphyne and Modified Graphyne in the Fields of Photoelectrocatalysis and Photovoltaics[J]. Acta Polymerica Sinica, 2019,50(12):1239-1252.
张嘉宾, 徐加良, 张宝, 冯亚青. 石墨炔及修饰石墨炔在光电能源领域的应用[J]. 高分子学报, 2019,50(12):1239-1252. DOI: 10.11777/j.issn1000-3304.2019.19153.
Jia-bin Zhang, Jia-liang Xu, Bao Zhang, Ya-qing Feng. Graphyne and Modified Graphyne in the Fields of Photoelectrocatalysis and Photovoltaics[J]. Acta Polymerica Sinica, 2019,50(12):1239-1252. DOI: 10.11777/j.issn1000-3304.2019.19153.
相较于石墨烯,含有sp杂化C原子的石墨炔具有天然的带隙,同时因其高载流子迁移率、
π
-共轭结构等优异的光电特性成为光电能源领域重要的候选材料. 另外,石墨炔中炔键单元的高活性为其化学修饰与掺杂提供了良好的平台,通过修饰可以对带隙进行调节,从而使石墨炔更好地满足光电器件对半导体材料的要求,近些年来,很多研究致力于此方面并取得了重要成果. 本文简要介绍了石墨炔的种类,以及
γ
-石墨二炔(graphdiyne,GD)的几种合成方法,对石墨炔及修饰石墨炔在光电催化及光伏领域应用的最新研究进行了综述,提出了目前研究中存在的一些问题,并对此领域未来的发展进行了展望.
Different from other members in the carbon material family
graphyne
first synthesized in 2010
has sp hybridized carbons and a natural band gap. According to many studies on optoelectronic devices
the recombination of electrons and holes is an important issue
and the excellent photoelectric properties of graphyne such as high carrier mobility and
π
-conjugated structure can make it an important candidate material in the fields of photocatalysis
electrocatalysis
batteries
etc
. However
there are still problems remaining for the direct application of unmodified graphyne owing to its inert surface and fixed band gap. The high activity of acetylenic bond units in the graphyne provides a good platform for chemical modification and doping. Therefore
the energy band structure and semiconductor performance of graphyne can be regulated by simple solution mixing
hydrothermal reaction
and redox method to achieve material hybridization or hetero atom doping
so that the graphyne will fulfill the requirements of photoelectric devices for a semiconductor material. Many studies have been concentrated on this topic
and numerous achievements have been made over the years. In this review article
the properties and synthesis methods of graphdiyne are firstly introduced
followed by a systematic summary about the mechanism of different atomic doping changes which could help in design of precursor molecules and subsequent synthesis of graphyne derivatives. The promotion effect of graphyne hybridization on charge transfer and its specific mechanism are then detailedly illustrated. The latest research progresses of graphyne and graphyne derivatives in practical applications including photoelectrocatalysis
dye sensitized solar cell
and perovskite solar cell are further discussed
while some problems existing in the current research of this field are also listed. Our review concludes with the proposal that research focuses in the future should be shifted from theoretical calculation to specific experiment and the mechanism in the process requires better understanding
so as to push forward the studies on graphyne and further improve material properties.
石墨炔修饰光电催化光伏
GraphyneModificationPhotoelectrocatalysisPhotovoltaic
Coleman J N, Lotya M, O'neill A. Science , 2011 . 331 ( 6017 ): 568 - 571 . DOI:10.1126/science.1194975http://doi.org/10.1126/science.1194975 .
Geim A K, Grigorieva I V. Nature , 2013 . 499 ( 7459 ): 419 - 425 . DOI:10.1038/nature12385http://doi.org/10.1038/nature12385 .
Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science , 2013 . 340 ( 6139 ): 1226419 - 1226436 . DOI:10.1126/science.1226419http://doi.org/10.1126/science.1226419 .
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat Nanotechnol , 2011 . 6 ( 3 ): 147 - 150 . DOI:10.1038/nnano.2010.279http://doi.org/10.1038/nnano.2010.279 .
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat Nanotechnol , 2012 . 7 ( 11 ): 699 - 712 . DOI:10.1038/nnano.2012.193http://doi.org/10.1038/nnano.2012.193 .
Haley M M, Brand S C, Pak J J. Angew Chem Int Ed , 1997 . 36 ( 8 ): 836 - 838 . DOI:10.1002/anie.199708361http://doi.org/10.1002/anie.199708361 .
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem Commun , 2010 . 46 ( 19 ): 3256 - 3258 . DOI:10.1039/b922733dhttp://doi.org/10.1039/b922733d .
Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J Am Chem Soc , 2017 . 139 ( 8 ): 3145 - 3152 . DOI:10.1021/jacs.6b12776http://doi.org/10.1021/jacs.6b12776 .
Jin Z, Zhou Q, Chen Y, Mao P, Li H, Liu H, Wang J, Li Y. Adv Mater , 2016 . 28 ( 19 ): 3697 - 3702 . DOI:10.1002/adma.201600354http://doi.org/10.1002/adma.201600354 .
Du H, Yang H, Huang C, He J, Liu H, Li Y. Nano Energy , 2016 . 22 615 - 622 . DOI:10.1016/j.nanoen.2016.02.052http://doi.org/10.1016/j.nanoen.2016.02.052 .
Xue Y, Guo Y, Yi Y, Li Y, Liu H, Li D, Yang W, Li Y. Nano Energy , 2016 . 30 858 - 866 . DOI:10.1016/j.nanoen.2016.09.005http://doi.org/10.1016/j.nanoen.2016.09.005 .
Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Nano Lett , 2015 . 15 ( 4 ): 2756 - 2762 . DOI:10.1021/acs.nanolett.5b00787http://doi.org/10.1021/acs.nanolett.5b00787 .
Zhao Y S, Tang H J, Yang N L, Wang D. Adv Sci , 2018 . 5 ( 12 ): 1800959 - 1800976 . DOI:10.1002/advs.201800959http://doi.org/10.1002/advs.201800959 .
Enyashin A N, Ivanovskii A L. Phys Status , 2011 . 248 ( 8 ): 1879 - 1883 . DOI:10.1002/pssb.201046583http://doi.org/10.1002/pssb.201046583 .
Zhou J, Li J, Liu Z, Zhang J. Adv Mater , 2019 . 1803758 - 1803773 . DOI:10.1002/adma.201803758http://doi.org/10.1002/adma.201803758 .
Zhou J Y, Zhang J, Liu Z F. Acta Phys-Chim Sin , 2018 . 34 ( 9 ): 977 - 991.
Qiao J S, Kong X H, Hu Z X, Yang F, Ji W. Nat Commun , 2014 . 5 1 - 7.
Du R, Zhang N, Xu H, Mao N N, Duan W J, Wang J Y, Zhao Q C, Liu Z F, Zhang J. Adv Mater , 2014 . 26 ( 47 ): 8053 - 8058 . DOI:10.1002/adma.201403058http://doi.org/10.1002/adma.201403058 .
Parvin N, Jin Q, Wei Y Z, Yu R B, Zheng B, Huang L, Zhang Y, Wang L H, Zhang H, Gao M Y, Zhao H J, Hu W P, Li Y L, Wang D. Adv Mater , 2017 . 29 ( 18 ): 1606755 - 1606761 . DOI:10.1002/adma.201606755http://doi.org/10.1002/adma.201606755 .
Liu R, Gao X, Zhou J Y, Xu H, Li Z Z, Zhang S Q, Xie Z Q, Zhang J, Liu Z F. Adv Mater , 2017 . 29 ( 18 ): 1604665 - 1604671 . DOI:10.1002/adma.201604665http://doi.org/10.1002/adma.201604665 .
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science , 2011 . 332 ( 6026 ): 228 - 231 . DOI:10.1126/science.1202747http://doi.org/10.1126/science.1202747 .
Gao X, Zhu Y H, Yi D, Zhou J Y, Zhang S S, Yin C, Ding F, Zhang S Q, Yi X H, Wang J Z, Tong L M, Han Y, Liu Z F, Zhang J. Sci Adv , 2018 . 4 ( 7 ): 1 - 7.
Long M Q, Tang L, Wang D, Li Y L, Shuai Z G. ACS Nano , 2011 . 5 ( 4 ): 2593 - 2600 . DOI:10.1021/nn102472shttp://doi.org/10.1021/nn102472s .
Li J, Zhao M, Zhao C, Jian H, Wang N, Yao L, Huang C, Zhao Y, Jiu T. ACS Appl Mater Interfaces , 2019 . 11 ( 3 ): 2626 - 2631 . DOI:10.1021/acsami.8b02611http://doi.org/10.1021/acsami.8b02611 .
Cui H J, Sheng X L, Yan Q B, Zheng Q R, Su G. Phys Chem Chem Phys , 2013 . 15 ( 21 ): 8179 - 8185 . DOI:10.1039/c3cp44457khttp://doi.org/10.1039/c3cp44457k .
Jiao Y, Du A J, Hankel M, Zhu Z H, Rudolph V, Smith S C. Chem Commun , 2011 . 47 ( 43 ): 11843 - 11845 . DOI:10.1039/c1cc15129khttp://doi.org/10.1039/c1cc15129k .
Sun L, Jiang P H, Liu H J, Fan D D, Liang J H, Wei J, Cheng L, Zhang J, Shi J. Carbon , 2015 . 90 255 - 259 . DOI:10.1016/j.carbon.2015.04.037http://doi.org/10.1016/j.carbon.2015.04.037 .
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem Rev , 2018 . 118 ( 16 ): 7744 - 7803 . DOI:10.1021/acs.chemrev.8b00288http://doi.org/10.1021/acs.chemrev.8b00288 .
Kim B G, Choi H J. Phys Rev B , 2012 . 86 ( 11 ): 1 - 5.
Wu L, Dong Y, Zhao J, Ma D, Huang W, Zhang Y, Wang Y, Jiang X, Xiang Y, Li J, Feng Y, Xu J, Zhang H. Adv Mater , 2019 . 31 ( 14 ): 1807981 - 1807991 . DOI:10.1002/adma.201807981http://doi.org/10.1002/adma.201807981 .
Yang Z, Liu R, Wang N, He J, Wang K, Li X, Shen X, Wang X, Lv Q, Zhang M, Luo J, Jiu T, Hou Z, Huang C. Carbon , 2018 . 137 442 - 450 . DOI:10.1016/j.carbon.2018.05.049http://doi.org/10.1016/j.carbon.2018.05.049 .
Qi S Y, Ma X K, Yang B, Sun L, Li W F, Zhao M W. Carbon , 2019 . 149 234 - 241 . DOI:10.1016/j.carbon.2019.04.024http://doi.org/10.1016/j.carbon.2019.04.024 .
Bhattacharya B, Singh N B, Sarkar U. Int J Quantum Chem , 2015 . 115 ( 13 ): 820 - 829 . DOI:10.1002/qua.24910http://doi.org/10.1002/qua.24910 .
Jafari M, Asadpour M, Majelan N A, Faghihnasiri M. Comput Mater Sci , 2014 . 82 391 - 398 . DOI:10.1016/j.commatsci.2013.09.054http://doi.org/10.1016/j.commatsci.2013.09.054 .
Bhattacharya B, Singh N B, Mondal R, Sarkar U. Phys Chem Chem Phys , 2015 . 17 ( 29 ): 19325 - 19341 . DOI:10.1039/C5CP02938Dhttp://doi.org/10.1039/C5CP02938D .
Bhattacharya B, Sarkar U. J Phys Chem C , 2016 . 120 ( 47 ): 26793 - 26806 . DOI:10.1021/acs.jpcc.6b07478http://doi.org/10.1021/acs.jpcc.6b07478 .
Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z. J Phys Chem A , 2012 . 116 ( 15 ): 3934 - 3939 . DOI:10.1021/jp300107dhttp://doi.org/10.1021/jp300107d .
He J, Ma S Y, Zhou P, Zhang C X, He C, Sun L Z. J Phys Chem C , 2012 . 116 ( 50 ): 26313 - 26321 . DOI:10.1021/jp307408uhttp://doi.org/10.1021/jp307408u .
Mashhadzadeh A H, Vahedi A M, Ardjmand M, Ahangari M G. Superlattices Microstruct , 2016 . 100 1094 - 1102 . DOI:10.1016/j.spmi.2016.10.079http://doi.org/10.1016/j.spmi.2016.10.079 .
Kim S, Ruiz Puigdollers A, Gamallo P, Vines F, Lee J Y. Carbon , 2017 . 120 63 - 70 . DOI:10.1016/j.carbon.2017.05.028http://doi.org/10.1016/j.carbon.2017.05.028 .
Lin Z Z, Wei Q, Zhu X M. Carbon , 2014 . 66 504 - 510 . DOI:10.1016/j.carbon.2013.09.027http://doi.org/10.1016/j.carbon.2013.09.027 .
Lin Z Y, Liu G Z, Zheng Y P, Lin Y B, Huang Z G. J Mater Chem A , 2018 . 6 ( 45 ): 22655 - 22661 . DOI:10.1039/C8TA08225Ahttp://doi.org/10.1039/C8TA08225A .
Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim S J, Venugopal G. J Phys Chem C , 2015 . 119 ( 38 ): 22057 - 22065 . DOI:10.1021/acs.jpcc.5b06138http://doi.org/10.1021/acs.jpcc.5b06138 .
Wang S, Yi L, Halpert J E, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y. Small , 2012 . 8 ( 2 ): 265 -271 . DOI:10.1002/smll.201101686http://doi.org/10.1002/smll.201101686 .
Yang N L, Liu Y Y, Wen H, Tang Z Y, Zhao H J, Li Y L, Wang D. ACS Nano , 2013 . 7 ( 2 ): 1504 - 1512 . DOI:10.1021/nn305288zhttp://doi.org/10.1021/nn305288z .
Xiang Q, Yu J, Wang W, Jaroniec M. Chem Commun , 2011 . 47 ( 24 ): 6906 - 6908 . DOI:10.1039/c1cc11740hhttp://doi.org/10.1039/c1cc11740h .
Wang J, Tafen D N, Lewis J P, Hong Z, Manivannan A, Zhi M, Li M, Wu N. J Am Chem Soc , 2009 . 131 ( 34 ): 12290 - 12297 . DOI:10.1021/ja903781hhttp://doi.org/10.1021/ja903781h .
Serpone N. J Phys Chem B , 2006 . 110 ( 48 ): 24287 - 24293 . DOI:10.1021/jp065659rhttp://doi.org/10.1021/jp065659r .
Dong Y Z, Zhao Y M, Chen Y H, Feng Y Q, Zhu M Y, Ju C G, Zhang B, Liu H B, Xu J L. J Mater Sci , 2018 . 53 ( 12 ): 8921 - 8932 . DOI:10.1007/s10853-018-2210-yhttp://doi.org/10.1007/s10853-018-2210-y .
Ren Y, Dong Y Z, Feng Y Q, Xu J L. Catalysts , 2018 . 8 ( 12 ): 1 - 25.
Li Y, Xu L, Liu H, Li Y. Chem Soc Rev , 2014 . 43 ( 8 ): 2572 - 2586 . DOI:10.1039/c3cs60388ahttp://doi.org/10.1039/c3cs60388a .
Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L. J Am Chem Soc , 2015 . 137 ( 16 ): 5260 - 5263 . DOI:10.1021/ja5131337http://doi.org/10.1021/ja5131337 .
Zhang X, Zhu M, Chen P, Li Y, Liu H, Li Y, Liu M. Phys Chem Chem Phys , 2015 . 17 ( 2 ): 1217 - 1225 . DOI:10.1039/C4CP04683Hhttp://doi.org/10.1039/C4CP04683H .
Pan Q Y, Liu H, Zhao Y J, Chen S Q, Xue B, Kan X N, Huang X W, Liu J, Li Z B. ACS Appl Mater Interfaces , 2019 . 11 ( 3 ): 2740 - 2744 . DOI:10.1021/acsami.8b03311http://doi.org/10.1021/acsami.8b03311 .
Kang B T, Shi H, Wu S, Zhao W, Ai H Q, Lee J Y. Carbon , 2017 . 123 415 - 420 . DOI:10.1016/j.carbon.2017.07.087http://doi.org/10.1016/j.carbon.2017.07.087 .
Srinivasu K, Ghosh S K. J Phys Chem C , 2013 . 117 ( 49 ): 26021 - 26028 . DOI:10.1021/jp407007nhttp://doi.org/10.1021/jp407007n .
Hardin B E, Snaith H J, Mcgehee M D. Nat Photonics , 2012 . 6 ( 3 ): 162 - 169 . DOI:10.1038/nphoton.2012.22http://doi.org/10.1038/nphoton.2012.22 .
Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H, Wang D. Adv Energy Mater , 2015 . 5 ( 12 ): 1500296 - 1500312 . DOI:10.1002/aenm.201500296http://doi.org/10.1002/aenm.201500296 .
Wu M S, Ceng Z Z, Chen C Y. Electrochim Acta , 2016 . 191 256 - 262 . DOI:10.1016/j.electacta.2016.01.041http://doi.org/10.1016/j.electacta.2016.01.041 .
Zhang Z, Cui Z, Zhang K, Feng Y, Meng S. J Electrochem Soc , 2016 . 163 ( 5 ): 644 - 649 . DOI:10.1149/2.0371605jeshttp://doi.org/10.1149/2.0371605jes .
Kunzmann A, Stanzel M, Peukert W, Costa R D, Guldi D M. Adv Energy Mater , 2016 . 6 ( 1 ): 1501075 - 1501085 . DOI:10.1002/aenm.201501075http://doi.org/10.1002/aenm.201501075 .
Ding Y, Mo L E, Tao L, Ma Y M, Hu L H, Huang Y, Fang X Q, Yao J X, Xi X W, Dai S Y. J Power Sources , 2014 . 272 1046 - 1052 . DOI:10.1016/j.jpowsour.2014.09.007http://doi.org/10.1016/j.jpowsour.2014.09.007 .
Zhu M, Dong Y, Xu J, Zhang B, Feng Y. J Mater Sci , 2019 . 54 ( 6 ): 4893 - 4904 . DOI:10.1007/s10853-018-03204-xhttp://doi.org/10.1007/s10853-018-03204-x .
Li H S, Zhang R, Li Y S, Li Y M, Liu H B, Shi J J, Zhang H Y, Wu H J, Luo Y H, Li D M, Li Y L, Meng Q B. Adv Energy Mater , 2018 . 8 1802012 DOI:10.1002/aenm.201802012http://doi.org/10.1002/aenm.201802012 .
Han Y Y, Lu X L, Tang S F, Yin X P, Wei Z W, Lu T B. Adv Energy Mater , 2018 . 8 1702992 DOI:10.1002/aenm.201702992http://doi.org/10.1002/aenm.201702992 .
Zhang X S, Wang Q, Jin Z W, Chen Y H, Liu H B, Wang J Z, Li Y L, Liu S Z. Adv Mater Interfaces , 2018 . 5 ( 2 ): 1 - 11.
Wang N, He, J J, Wang K, Zhao Y J, J iu, T G, Huang, C S, Li Y L. Adv Mater , 2019 . 31 1803202 DOI:10.1002/adma.201803202http://doi.org/10.1002/adma.201803202 .
0
浏览量
47
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构