浏览全部资源
扫码关注微信
1.航天特种材料及工艺技术研究所 北京 100074
2.中国科学院化学研究所 高分子物理与化学实验室 北京 100190
E-mail: wangdong@iccas.ac.cn Dong Wang, E-mail: wangdong@iccas.ac.cn
E-mail: sock129@163.com Guo-yong Wang, E-mail: sock129@163.com
纸质出版日期:2020-3,
网络出版日期:2019-11-28,
收稿日期:2019-9-10,
修回日期:2019-10-19,
扫 描 看 全 文
汪东, 李丽英, 柯红军, 许孔力, 卢山, 龚文化, 张欢, 王国勇, 赵英民, 赵宁. 高性能可回收环氧树脂及其复合材料的制备与性能研究[J]. 高分子学报, 2020,51(3):303-310.
Dong Wang, Li-ying Li, Hong-jun Ke, Kong-li Xu, Shan Lu, Wen-hua Gong, Huan Zhang, Guo-yong Wang, Ying-min Zhao, Ning Zhao. Preparation and Properties of Recyclable High-performance Epoxy Resins and Composites[J]. Acta Polymerica Sinica, 2020,51(3):303-310.
汪东, 李丽英, 柯红军, 许孔力, 卢山, 龚文化, 张欢, 王国勇, 赵英民, 赵宁. 高性能可回收环氧树脂及其复合材料的制备与性能研究[J]. 高分子学报, 2020,51(3):303-310. DOI: 10.11777/j.issn1000-3304.2019.19167.
Dong Wang, Li-ying Li, Hong-jun Ke, Kong-li Xu, Shan Lu, Wen-hua Gong, Huan Zhang, Guo-yong Wang, Ying-min Zhao, Ning Zhao. Preparation and Properties of Recyclable High-performance Epoxy Resins and Composites[J]. Acta Polymerica Sinica, 2020,51(3):303-310. DOI: 10.11777/j.issn1000-3304.2019.19167.
采用戊二酸酐为固化剂,乙酰丙酮锌为催化剂制备了一种综合性能优异的高性能可回收环氧树脂. 系统研究了固化剂及催化剂含量对树脂结构、热学及动态性能的影响,实现了树脂组成的优化设计. 基于酯交换反应的热可逆性,制备的vitrimer树脂通过物理热压方法可实现良好回收,力学强度保持率可达80%. 采用RTM工艺制备的碳纤维织物增强vitrimer树脂复合材料表现出与传统热固性树脂基复合材料相当的力学性能,并且通过醇类溶剂热降解树脂的方法,可实现复合材料中碳纤维的高效无损回收,回收率近100%.
Aiming at the demands for recyclable resins and composites in practical applications
high performance recyclable epoxy resins with excellent comprehensive properties are prepared using methyl teterahydrophthalic anhydride as the curing agent and zinc acetylacetonate hydrate as the catalyst. The effects of anhydride and catalyst concentrations on the structure
thermal and dynamic properties of epoxy vitrimers are systematically explored to achieve the resin formulation optimization. With the decrease of anhydride concentrations
the cross-linking densities decrease
and the epoxy vitrimers show decreased glass transition temperature (
T
g
) but enhanced dynamic properties
which is attributed to the sufficient hydroxyl groups in structure that could trigger the transesterification exchange reactions with ester bonds. The increase of catalyst concentrations can also lead to enhanced dynamic properties as a result of the accelerated transesterification rates. The epoxy vitrimer with epoxy/anhydride/catalyst ratios of 1:0.5:0.05 displays optimal comprehensive performance with intermediate thermal properties and excellent dynamic properties. Based on the dynamic transesterification reaction
the epoxy vitrimers can be well reprocessed by the physically hot pressing methods at 180 °C for 6 h under a pressure of 10 MPa
and the recycling efficiency can be up to 80%. Moreover
the epoxy vitrimer-based carbon fiber reinforced composites are prepared by the resin transfer molding (RTM) technique. The prepared carbon fabric composites show a tensile strength of 479 MPa and tensile modulus of 58 GPa
revealing comparable mechanical properties to those of traditional thermoset composites. After heating the composites in ethylene glycol solvent at 180 °C for 8 h
the clean carbon fiber fabric with the same dimension as fresh ones can be reclaimed due to the dissolution of epoxy vitrimer binder in alcohol solvent
via
transesterification. In addition
the collected dissolved polymers can form vitrimers again by evaporating the EG solvent in open air at 180 °C for 12 h. It is demonstrated that the carbon fibers and epoxy polymers can both be fully recycled from the composites by the alcohol solvent dissolution method.
环氧树脂复合材料可回收酯交换反应
Epoxy resinsCompositesRecyclableTransesterification reaction
Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Science , 2015 . 347 768 - 771 . DOI:10.1126/science.1260352http://doi.org/10.1126/science.1260352 .
Denissen W, Winne J M, Du Prez F E. Chem Sci , 2016 . 7 30 - 38 . DOI:10.1039/C5SC02223Ahttp://doi.org/10.1039/C5SC02223A .
Imbernon L, Norvez S. Eur Polym J , 2016 . 82 347 - 376 . DOI:10.1016/j.eurpolymj.2016.03.016http://doi.org/10.1016/j.eurpolymj.2016.03.016 .
Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L. Science , 2017 . 356 62 - 65 . DOI:10.1126/science.aah5281http://doi.org/10.1126/science.aah5281 .
Fortman D J, Brutman J P, De Hoe G X, Snyder R L, Dichtel W R, Hillmyer M A. ACS Sustain Chem Eng , 2018 . 6 11145 - 11159 . DOI:10.1021/acssuschemeng.8b02355http://doi.org/10.1021/acssuschemeng.8b02355 .
Zhang Zeping(张泽平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 829 - 852 . DOI:10.11777/j.issn1000-3304.2018.18060http://doi.org/10.11777/j.issn1000-3304.2018.18060 .
Huang Xin(黄鑫), Liu Hanchao(刘汉超), Fan Zheng(樊正), Wang Hao(王豪), Huang Guangsu(黄光速), Wu Jinrong(吴锦荣). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 535 - 542.
Montarnal D, Capelot M, Tournilhac F, Leibler L. Science , 2011 . 334 965 - 968 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Lan Xiaoyu(兰晓雨), Ma Xiaofeng(马晓峰), Dai Peng(戴鹏), Li Bengang(李本刚), Luo Zhenyang(罗振扬). Polymer Bulletin(高分子通报) , 2018 . ( 3 ): 31 - 39.
Chen Xingxing(陈兴幸), Zhong Qianyun(钟倩云), Wang Shujuan(王淑娟), Wu Youshen(吴宥伸), Tan Jidong(谭继东), Lei Hengxin(雷恒鑫), Huang Shaoyong(黄绍永), Zhang Yanfeng(张彦峰). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 469 - 484.
Long R, Qi H J, Dunn M L. Soft Matter , 2013 . 9 4083 - 4096 . DOI:10.1039/c3sm27945fhttp://doi.org/10.1039/c3sm27945f .
Capelot M, Montarnal D, Tournilhac F, Leibler L. J Am Chem Soc , 2012 . 134 7664 - 7667 . DOI:10.1021/ja302894khttp://doi.org/10.1021/ja302894k .
Capelot M, Unterlass M M, Tournilhac F, Leibler L. ACS Macro Lett , 2012 . 1 789 - 792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f .
Brutman J P, Delgado P A, Hillmyer M A. ACS Macro Lett , 2014 . 3 607 - 610 . DOI:10.1021/mz500269whttp://doi.org/10.1021/mz500269w .
Pei Z, Yang Y, Chen Q, Terentjev E M, Wei Y, Ji Y. Nat Mater , 2014 . 13 36 - 41 . DOI:10.1038/nmat3812http://doi.org/10.1038/nmat3812 .
Yang Z, Wang Q, Wang T. ACS Appl Mater Interfaces , 2016 . 8 21691 - 21699 . DOI:10.1021/acsami.6b07403http://doi.org/10.1021/acsami.6b07403 .
Imbernon L, Norvez S, Leibler L. Macromolecules , 2016 . 49 2172 - 2178 . DOI:10.1021/acs.macromol.5b02751http://doi.org/10.1021/acs.macromol.5b02751 .
Shi Q, Yu K, Kuang X, Mu X, Dunn C K, Dunn M L, Wang T, Qi H J. Mater Horiz , 2017 . 4 598 - 607 . DOI:10.1039/C7MH00043Jhttp://doi.org/10.1039/C7MH00043J .
Liu W, Schmidt D F, Reynaud E. Ind Eng Chem Res , 2017 . 56 2667 - 2672 . DOI:10.1021/acs.iecr.6b03829http://doi.org/10.1021/acs.iecr.6b03829 .
Zhang H, Cai C, Liu W, Li D, Zhang J, Zhao N, Xu J. Sci Rep , 2017 . 7 11833 DOI:10.1038/s41598-017-11485-6http://doi.org/10.1038/s41598-017-11485-6 .
Yang Yang(杨洋), Zhang Xiqi(张锡奇), Wei Yen(危岩), Ji Yan(吉岩). Acta Polymerica Sinica(高分子学报) , 2017 . ( 10 ): 1662 - 1667 . DOI:10.11777/j.issn1000-3304.2017.17134http://doi.org/10.11777/j.issn1000-3304.2017.17134 .
Yu K, Taynton P, Zhang W, Dunn M L, Qi H J. RSC Adv , 2014 . 4 10108 - 10117 . DOI:10.1039/C3RA47438Khttp://doi.org/10.1039/C3RA47438K .
Demongeot A, Mougnier S J, Okada S, Soulié-Ziakovic C, Tournilhac F. Polym Chem , 2016 . 7 4486 - 4493 . DOI:10.1039/C6PY00752Jhttp://doi.org/10.1039/C6PY00752J .
Yu K, Shi Q, Dunn M L, Wang T, Qi H J. Adv Funct Mater , 2016 . 26 6098 - 6106 . DOI:10.1002/adfm.201602056http://doi.org/10.1002/adfm.201602056 .
Altuna F I, Pettarin V, Williams R J J. Green Chem , 2013 . 15 3360 - 3366 . DOI:10.1039/c3gc41384ehttp://doi.org/10.1039/c3gc41384e .
Yang Y, Pei Z, Zhang X, Tao L, Wei Y, Ji Y. Chem Sci , 2014 . 5 3486 - 3492 . DOI:10.1039/C4SC00543Khttp://doi.org/10.1039/C4SC00543K .
Yang Y, Pei Z, Li Z, Wei Y, Ji Y. J Am Chem Soc , 2016 . 138 2118 - 2121 . DOI:10.1021/jacs.5b12531http://doi.org/10.1021/jacs.5b12531 .
Pei Z, Yang Y, Chen Q, Wei Y, Ji Y. Adv Mater , 2016 . 28 156 - 160 . DOI:10.1002/adma.201503789http://doi.org/10.1002/adma.201503789 .
Liu T, Hao C, Wang L, Li Y, Liu W, Xin J, Zhang J. Macromolecules , 2017 . 50 8588 - 8597 . DOI:10.1021/acs.macromol.7b01889http://doi.org/10.1021/acs.macromol.7b01889 .
Chabert E, Vial J, Cauchois J P, Mihaluta M, Tournilhac F. Soft Matter , 2016 . 12 4838 - 4845 . DOI:10.1039/C6SM00257Ahttp://doi.org/10.1039/C6SM00257A .
Lu L, Pan J, Li G. J Mater Chem A , 2017 . 5 21505 - 21513 . DOI:10.1039/C7TA06397Khttp://doi.org/10.1039/C7TA06397K .
Liu T, Hao C, Zhang S, Yang X, Wang L, Han J, Li Y, Xin J, Zhang J. Macromolecules , 2018 . 51 5577 - 5585 . DOI:10.1021/acs.macromol.8b01010http://doi.org/10.1021/acs.macromol.8b01010 .
Kuang X, Shi Q, Zhou Y, Zhao Z, Wang T, Qi H J. RSC Adv , 2018 . 8 1493 - 1502 . DOI:10.1039/C7RA12787Ahttp://doi.org/10.1039/C7RA12787A .
Kuang X, Guo E, Chen K, Qi H J. ACS Sustain Chem Eng , 2019 . 7 6880 - 6888 . DOI:10.1021/acssuschemeng.8b06409http://doi.org/10.1021/acssuschemeng.8b06409 .
Kuang X, Zhou Y, Shi Q, Wang T, Qi H J. ACS Sustain Chem Eng , 2018 . 6 9189 - 9197 . DOI:10.1021/acssuschemeng.8b01538http://doi.org/10.1021/acssuschemeng.8b01538 .
Li Liying(李丽英), Meng Songhe(孟松鹤), Xu Chenghai(许承海), Zhang Tao(张涛), Wang Guoyong(王国勇),Liu Jianjun(刘建军). Materials Science and Technology(材料科学与工艺) , 2015 . 23 6 - 12 . DOI:10.11951/j.issn.1005-0299.20150502http://doi.org/10.11951/j.issn.1005-0299.20150502 .
0
浏览量
80
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构