浏览全部资源
扫码关注微信
1.中国科学院化学研究所 高分子化学与物理实验室 北京 100190
2.山东如意科技集团有限公司 济宁 272000
3.国家纺纱工程技术研究中心 济宁 272000
E-mail: jxu@iccas.ac.cn
纸质出版日期:2020-3,
网络出版日期:2019-12-6,
收稿日期:2019-9-22,
修回日期:2019-10-29,
扫 描 看 全 文
赵晗, 尚晴, 杨萌, 金帅, 王洋洋, 赵宁, 尹晓品, 丁彩玲, 徐坚. 邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维[J]. 高分子学报, 2020,51(3):287-294.
Han Zhao, Qing Shang, Meng Yang, Shuai Jin, Yang-yang Wang, Ning Zhao, Xiao-pin Yin, Cai-ling Ding, Jian Xu. Surface Modification of Ultra-high Molecular Weight Polyethylene Fiber by Catechol-tetraethylenepentamine[J]. Acta Polymerica Sinica, 2020,51(3):287-294.
赵晗, 尚晴, 杨萌, 金帅, 王洋洋, 赵宁, 尹晓品, 丁彩玲, 徐坚. 邻苯二酚-四乙烯五胺改性超高分子量聚乙烯纤维[J]. 高分子学报, 2020,51(3):287-294. DOI: 10.11777/j.issn1000-3304.2019.19172.
Han Zhao, Qing Shang, Meng Yang, Shuai Jin, Yang-yang Wang, Ning Zhao, Xiao-pin Yin, Cai-ling Ding, Jian Xu. Surface Modification of Ultra-high Molecular Weight Polyethylene Fiber by Catechol-tetraethylenepentamine[J]. Acta Polymerica Sinica, 2020,51(3):287-294. DOI: 10.11777/j.issn1000-3304.2019.19172.
应用Cat-TEPA改性超高分子量聚乙烯(UHMWPE)纤维,在难黏附的纤维表面形成均匀涂层. 采用透射电子显微镜(TEM)、红外光谱(FTIR)、X射线光电子能谱(XPS)、X射线衍射(XRD)、示差扫描量热(DSC)、热重分析(TGA)和静态接触角测试等手段对其结构和性能进行了表征,并通过单丝拔出实验研究改性前后纤维与环氧树脂之间的界面剪切强度(IFSS),探索了反应物配比、反应时间对表面性能的影响,并确定最佳改性条件. 结果表明Cat-TEPA共沉积改性未影响纤维的结晶和热稳定性,改性后纤维表面浸润性得到改善,且适当增加反应时间和TEPA含量能够提高纤维和树脂之间的IFSS,当Cat-TEPA摩尔比为1:4,反应时间为24 h时效果最佳,与未改性纤维相比,界面剪切强度提升约44%.
In recent years
research on interface modification based on dopamine has been greatly developed
but the high price of dopamine limits its practical application. Cheap catechol-tetraethylenepentamine (Cat-TEPA)
similar to dopamine
can spontaneously polymerize and then deposit on the surface of various materials
exhibiting strong adhesion
reactivity
and no selectivity to the substrate. Surface modification based on Cat-TEPA has become a universal method suitable for practical applications. In this paper
ultra-high molecular weight polyethylene (UHMWPE) fiber was modified by Cat-TEPA. Transmission electron microscopy (TEM)
infrared spectroscopy (FTIR)
X-ray photoelectron spectroscopy (XPS)
X-ray diffraction (XRD)
differential scanning calorimetry (DSC)
thermogravimetric analysis (TGA)
and the static contact angle investigations were used to characterize the structure and performance of the modified fibers. The interfacial shear strength (IFSS) between the fiber and the epoxy resin before and after modification was measured by monofilament extraction experiment. The effects of reactant ratio and reaction time on interface properties were explored and the optimal modification conditions were determined. The results show that Cat-TEPA modification does not affect the crystallization and thermal stability of the fiber
and the surface wettability of the fiber is improved after modification. An optimal IFSS increase of about 44% has been obtained when the molar ratio of Cat-TEPA is 1:4 and reaction time is 24 h.
多巴胺邻苯二酚四乙烯五胺超高分子量聚乙烯表面改性剪切强度
DopamineCatecholTetraethylenepentamineUltra-high molecular weight polyethyleneSurface modificationShear strength
Wang J L, Liang G Z, Zhao W, Lu S H, Zhang Z P. Appl Surf Sci , 2006 . 253 ( 2 ): 668 - 673 . DOI:10.1016/j.apsusc.2005.12.165http://doi.org/10.1016/j.apsusc.2005.12.165 .
Jin X, Wang W Y, Bian L N, Xiao C F, Zheng G, Zhou C. Synthetic Met , 2011 . 161 ( 11-12 ): 984 - 989 . DOI:10.1016/j.synthmet.2011.03.004http://doi.org/10.1016/j.synthmet.2011.03.004 .
Xu H J, An M F, Lv Y, Wang Z B, Gu Q. Chinese J Polym Sci , 2016 . 34 ( 5 ): 606 - 615 . DOI:10.1007/s10118-016-1774-8http://doi.org/10.1007/s10118-016-1774-8 .
Li W, Huang M, Ma R. Polym Adv Technol , 2018 . 29 ( 4 ): 1287 - 1293 . DOI:10.1002/pat.4240http://doi.org/10.1002/pat.4240 .
Zec J, TomicN Z, Zrilic M, Levic S, Marinkovic A, Heinemann R J. Compos Part B-Eng , 2018 . 153 36 - 48 . DOI:10.1016/j.compositesb.2018.07.031http://doi.org/10.1016/j.compositesb.2018.07.031 .
Li B Y, Zhang J H, Ren M M, Wu P, Liu Y, Chen T, Cheng Z, Wang X, Liu X Y. RSC Adv , 2015 . 5 ( 96 ): 79081 - 79089 . DOI:10.1039/C5RA11810Ghttp://doi.org/10.1039/C5RA11810G .
Du J G, Wang Z, Yu J L, Ullah S, Yang B, Li C H, Zhao N, Fei B, Zhu C Z, Xu J. Adv Funct Mater , 2018 . 28 ( 20 ): 1707351 DOI:10.1002/adfm.201707351http://doi.org/10.1002/adfm.201707351 .
Chen Ping(陈平), Yu Qi(于祺), Xiong Xuhai(熊需海), Liu Dong(刘东), Liu Zhe(刘哲), Jia Caixia(贾彩霞). Acta Polymerica Sinica(高分子学报) , 2018 . ( 3 ): 323 - 335 . DOI:10.11777/j.issn1000-3304.2017.17081http://doi.org/10.11777/j.issn1000-3304.2017.17081 .
Ren Yu(任煜), Zhang Yin(张银), Wang Xiaona(王晓娜), Zang Chuanfeng(臧传锋), Zhang Wei(张伟). Acta Polymerica Sinica(高分子学报) , 2016 . ( 10 ): 1439 - 1446.
Li Z, Zhang W, Wang X, Mai Y, Zhang Y. Appl Surf Sci , 2011 . 257 ( 17 ): 7600 - 7608 . DOI:10.1016/j.apsusc.2011.03.134http://doi.org/10.1016/j.apsusc.2011.03.134 .
Wang L, Gao S, Wang J, Tian M. J Adhes , 2016 . 94 ( 1 ): 30 - 45.
Li J. Adv Mater Res , 2011 . 194-196 1685 - 1688 . DOI:10.4028/www.scientific.net/AMR.194-196.1685http://doi.org/10.4028/www.scientific.net/AMR.194-196.1685 .
Moon S I, Jang J. J Mater Sci , 1999 . 34 ( 17 ): 4219 - 4224 . DOI:10.1023/A:1004642500738http://doi.org/10.1023/A:1004642500738 .
Wang K, Liu M, Song C, Shen L, Chen P, Xu S. Mater Design , 2018 . 148 167 - 176 . DOI:10.1016/j.matdes.2018.03.069http://doi.org/10.1016/j.matdes.2018.03.069 .
Zheng J N, Lin Z, Zhang L, Yang H H. Sci China Chem , 2015 . 58 ( 6 ): 1056 - 1064 . DOI:10.1007/s11426-014-5286-5http://doi.org/10.1007/s11426-014-5286-5 .
Wan Q, Tian J W, Liu M Y, Zeng G J, Li Z, Wang K, Zhang Q S, Deng F J, Zhang X Y, Wei Y. RSC Adv , 2015 . 5 ( 32 ): 25329 - 25336 . DOI:10.1039/C4RA13408Ghttp://doi.org/10.1039/C4RA13408G .
Zhou M, Li Y, He C, Jin T, Wang K, Fu Q. Compos Sci Technol , 2014 . 91 22 - 29 . DOI:10.1016/j.compscitech.2013.11.019http://doi.org/10.1016/j.compscitech.2013.11.019 .
Sa R N, Wei Z H, Yan Y, Wang L, Wang W C, Zhang L Q, Ning N Y, Tian M. Compos Sci Technol , 2015 . 113 54 - 62 . DOI:10.1016/j.compscitech.2015.03.017http://doi.org/10.1016/j.compscitech.2015.03.017 .
Hu J C, Feng X, Liu Z Y, Zhao Y P, Chen L. Surf Interface Anal , 2017 . 49 ( 7 ): 640 - 646 . DOI:10.1002/sia.6203http://doi.org/10.1002/sia.6203 .
Shanmugam L, Feng X, Yang J. Compos Sci Technol , 2019 . 174 212 - 220 . DOI:10.1016/j.compscitech.2019.03.001http://doi.org/10.1016/j.compscitech.2019.03.001 .
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science , 2007 . 318 ( 5849 ): 426 - 430 . DOI:10.1126/science.1147241http://doi.org/10.1126/science.1147241 .
Zhao Mengxue(赵梦雪), Kong Miqiu(孔米秋), Liu Chengjun(刘成俊), Huang Yajiang(黄亚江), Li Guangxian(李光宪). Acta Polymerica Sinica(高分子学报) , 2018 . ( 6 ): 721 - 732 . DOI:10.11777/j.issn1000-3304.2017.17203http://doi.org/10.11777/j.issn1000-3304.2017.17203 .
Wang H, Wu J J, Cai C, Guo J, Fan H, Zhu C Z, Dong H X, Zhao N, Xu J. ACS Appl Mater Interface , 2014 . 6 ( 8 ): 5602 DOI:10.1021/am406052uhttp://doi.org/10.1021/am406052u .
Wang Y, Shao Y, Matson D W, Li J, Li Y. ACS Nano , 2010 . 4 ( 4 ): 1790 - 1798 . DOI:10.1021/nn100315shttp://doi.org/10.1021/nn100315s .
Wang Pin(王萍), Wang Xinwei(王新威), Zhang Yumei(张玉梅), Hou Xiuhong(侯秀红), Li Jianlong(李建龙),Zhao Chunbao (赵春保). China Synthetic Fiber Industry(合成纤维工业) , 2014 . 37 ( 4 ): 67 - 70 . DOI:10.3969/j.issn.1001-0041.2014.04.018http://doi.org/10.3969/j.issn.1001-0041.2014.04.018 .
Tashiro K, Sasaki S, Kobayashi M. Macromolecules , 1996 . 29 7460 - 7469 . DOI:10.1021/ma960333+http://doi.org/10.1021/ma960333+ .
0
浏览量
30
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构