浏览全部资源
扫码关注微信
1.广西医科大学 再生医学与医用生物资源开发应用省部共建协同创新中心 南宁 530021
2.国家纳米科学中心 中国科学院纳米生物效应与安全性重点实验室 北京 100190
Received:01 February 2024,
Accepted:06 March 2024,
Published Online:27 March 2024,
Published:20 May 2024
移动端阅览
廖宇思, 梁剑箫, 温转, 蔡明泽, 宋张志, 张薿元, 安红维, 王浩. 生物医用高分子材料细胞膜表面功能化的策略与应用. 高分子学报, 2024, 55(5), 553-572
Liao, Y. S.; Liang, J. X.; Wen, Z.; Cai, M. Z.; Song, Z. Z.; Zhang, N. Y.; An, H. W.; Wang, H. Strategies and applications of cell membrane surface functionalization of polymer materials. Acta Polymerica Sinica, 2024, 55(5), 553-572
廖宇思, 梁剑箫, 温转, 蔡明泽, 宋张志, 张薿元, 安红维, 王浩. 生物医用高分子材料细胞膜表面功能化的策略与应用. 高分子学报, 2024, 55(5), 553-572 DOI: 10.11777/j.issn.1000-3304.2024.24039.
Liao, Y. S.; Liang, J. X.; Wen, Z.; Cai, M. Z.; Song, Z. Z.; Zhang, N. Y.; An, H. W.; Wang, H. Strategies and applications of cell membrane surface functionalization of polymer materials. Acta Polymerica Sinica, 2024, 55(5), 553-572 DOI: 10.11777/j.issn.1000-3304.2024.24039.
细胞膜是细胞的外层包裹结构,保护细胞内部免受外界干扰. 通过对细胞膜进行修饰,引入特定的分子或结构,可以实现对细胞命运和功能的调控,从而赋予细胞特殊的功能. 近年来,利用高分子材料在细胞膜上发生自组装的策略用于功能化修饰细胞膜表面已被广泛研究. 本文综述了利用高分子、多肽及DNA纳米材料对细胞膜进行修饰的策略,总结了其带来的包括受体寡聚化、细胞膜通透性改变以及调节细胞间通讯的生物效应以及细胞膜表面功能化的生物应用.
The cell membrane
the outer protective structure of a cell
serves to shield its internal components from external disruptions. By manipulating the cell membrane and incorporating specific molecules or structures
one can exe
rt control over the fate and functionality of cells
thereby imbuing them with specialized functions. In recent years
the strategy of using biomacromolecules to self-assemble on cell membranes has been widely studied for functionalizing the surface of cell membranes. This paper reviews that the self-assembly of different biomacromolecules on the cell membrane surface can change the biological effects of cells and produce positive effects in tumor immunotherapy. It is elaborated that when biomacromolecular materials are self-assembled on the cell membrane
it can cause biological effects of cells
such as oligomerization of cell membrane receptor proteins to activate immune cells
changing cell membrane permeability to promote endocytosis
etc.
At the same time
its application in tumor treatment is briefly introduced
and the future development of self-assembly technology modified cell membrane surface is prospected.
Wu H. ; Zheng L. Y. ; Ling N. ; Zheng L. Y. ; Du Y. L. ; Zhang Q. ; Liu Y. ; Tan W. H. ; Qiu L. P. Chemically synthetic membrane receptors establish cells with artificial sense-and-respond signaling pathways . J. Am. Chem. Soc. , 2023 , 145 ( 4 ), 2315 - 2321 . doi: 10.1021/jacs.2c10903 http://dx.doi.org/10.1021/jacs.2c10903
Yang Y. X. ; Wang K. ; Pan Y. W. ; Rao L. ; Luo G. X. Engineered cell membrane-derived nanoparticles in immune modulation . Adv. Sci. , 2021 , 8 ( 24 ), e 2102330 . doi: 10.1002/advs.202102330 http://dx.doi.org/10.1002/advs.202102330
Tulpule A. ; Guan J. ; Neel D. S. ; Allegakoen H. R. ; Lin Y. P. ; Brown D. ; Chou Y. T. ; Heslin A. ; Chatterjee N. ; Perati S. ; Menon S. ; Nguyen T. A. ; Debnath J. ; Ramirez A. D. ; Shi X. Y. ; Yang B. ; Feng S. Y. ; Makhija S. ; Huang B. ; Bivona T. G. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules . Cell , 2021 , 184 ( 10 ), 2649 - 2664 .e 18 . doi: 10.1016/j.cell.2021.03.031 http://dx.doi.org/10.1016/j.cell.2021.03.031
Kong P. ; Yu Y. ; Wang L. ; Dou Y. Q. ; Zhang X. H. ; Cui Y. ; Wang H. Y. ; Yong Y. T. ; Liu Y. B. ; Hu H. J. ; Cui W. ; Sun S. G. ; Li B. H. ; Zhang F. ; Han M. Circ-Sirt 1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res. , 2019 , 47 ( 7 ), 3580 - 3593 . doi: 10.1093/nar/gkz141 http://dx.doi.org/10.1093/nar/gkz141
Li J. ; Xun K. Y. ; Zheng L. Y. ; Peng X. Y. ; Qiu L. P. ; Tan W. H. DNA-based dynamic mimicry of membrane proteins for programming adaptive cellular interactions . J. Am. Chem. Soc. , 2021 , 143 ( 12 ), 4585 - 4592 . doi: 10.1021/jacs.0c11245 http://dx.doi.org/10.1021/jacs.0c11245
Adebowale K. ; Liao R. ; Suja V. C. ; Kapate N. ; Lu A. ; Gao Y. S. ; Mitragotri S. Materials for cell surface engineering . Adv . Mater. , 2023 , 2210059 . doi: 10.1002/adma.202210059 http://dx.doi.org/10.1002/adma.202210059
Pan X. L. ; Pei J. P. ; Wang A. X. ; Shuai W. ; Feng L. ; Bu F. Q. ; Zhu Y. M. ; Zhang L. ; Wang G. ; Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy . Acta Pharm. Sin. B , 2022 , 12 ( 5 ), 2171 - 2192 . doi: 10.1016/j.apsb.2021.12.022 http://dx.doi.org/10.1016/j.apsb.2021.12.022
Yang H. ; Yao L. H. ; Wang Y. C. ; Chen G. J. ; Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules . Chem. Sci. , 2023 , 14 ( 46 ), 13325 - 13345 . doi: 10.1039/d3sc04597h http://dx.doi.org/10.1039/d3sc04597h
Adebowale K. ; Liao R. ; Suja V. C. ; Kapate N. ; Lu A. ; Gao Y. S. ; Mitragotri S. Materials for cell surface engineering . Adv . Mater. , 2023 , 2210059 . doi: 10.1002/adma.202210059 http://dx.doi.org/10.1002/adma.202210059
Ma J. Y. ; Wang Y. X. ; Huang Y. ; Zhang Y. ; Cui Y. X. ; Kong D. M. Chemical-biological approaches for the direct regulation of cell-cell aggregation . Aggregate , 2022 , 3 ( 2 ), e 166 . doi: 10.1002/agt2.166 http://dx.doi.org/10.1002/agt2.166
Csizmar C. M. ; Petersburg J. R. ; Wagner C. R. Programming cell-cell interactions through non-genetic membrane engineering . Cell Chem. Biol. , 2018 , 25 ( 8 ), 931 - 940 . doi: 10.1016/j.chembiol.2018.05.009 http://dx.doi.org/10.1016/j.chembiol.2018.05.009
Miao L. ; Wei Y. Y. ; Lu X. ; Jiang M. ; Liu Y. X. ; Li P. S. ; Ren Y. X. ; Zhang H. ; Chen W. ; Han B. ; Lu W. L. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv. Drug Deliv. Rev. , 2024 , 204 , 115131 . doi: 10.1016/j.addr.2023.115131 http://dx.doi.org/10.1016/j.addr.2023.115131
Chai Z. L. ; Ran D. N. ; Lu L. W. ; Zhan C. Y. ; Ruan H. T. ; Hu X. F. ; Xie C. ; Jiang K. ; Li J. Y. ; Zhou J. F. ; Wang J. ; Zhang Y. Y. ; Fang R. H. ; Zhang L. F. ; Lu W. Y. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma . ACS Nano , 2019 , 13 ( 5 ), 5591 - 5601 . doi: 10.1021/acsnano.9b00661 http://dx.doi.org/10.1021/acsnano.9b00661
Li Y. R. ; Huo F. ; Chen L. S. ; Wang H. Q. ; Wu J. Z. ; Zhang P. W. ; Feng N. ; Li W. ; Wang L. ; Wang Y. C. ; Wang X. J. ; Yang X. L. ; Lu Z. Q. ; Mao Y. ; Yan C. ; Ding L. ; Ju H. X. Protein-targeted glycan editing on living cells disrupts KRAS signaling . Angew. Chem. Int. Ed. , 2023 , 62 ( 26 ), e 202218148 . doi: 10.1002/anie.202218148 http://dx.doi.org/10.1002/anie.202218148
Yang H. ; Xiong Z. J. ; Heng X. Y. ; Niu X. M. ; Wang Y. C. ; Yao L. H. ; Sun L. L. ; Liu Z. ; Chen H. Click-chemistry-mediated cell membrane glycopolymer engineering to potentiate dendritic cell vaccines . Angew. Chem. Int. Ed. , 2024 , 63 ( 2 ), e 202315782 . doi: 10.1002/anie.202315782 http://dx.doi.org/10.1002/anie.202315782
Liu J. ; Kim Y. S. ; Richardson C. E. ; Tom A. ; Ramakrishnan C. ; Birey F. ; Katsumata T. ; Chen S. C. ; Wang C. ; Wang X. ; Joubert L. M. ; Jiang Y. W. ; Wang H. L. ; Fenno L. E. ; Tok J. B. H. ; Pașca S. P. ; Shen K. ; Bao Z. N. ; Deisseroth K. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals . Science , 2020 , 367 ( 6484 ), 1372 - 1376 . doi: 10.1126/science.aay4866 http://dx.doi.org/10.1126/science.aay4866
Zhang A. Q. ; Loh K. Y. ; Kadur C. S. ; Michalek L. ; Dou J. Y. ; Ramakrishnan C. ; Bao Z. N. ; Deisseroth K. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons . Sci. Adv. , 2023 , 9 ( 32 ), eadi 1870 . doi: 10.1126/sciadv.adi1870 http://dx.doi.org/10.1126/sciadv.adi1870
Guo Z. Y. ; Noh I. ; Zhu A. T. ; Yu Y. Y. ; Gao W. W. ; Fang R. H. ; Zhang L. F. Cancer cell membrane nanodiscs for antitumor vaccination . Nano Lett. , 2023 , 23 ( 17 ), 7941 - 7949 . doi: 10.1021/acs.nanolett.3c01775 http://dx.doi.org/10.1021/acs.nanolett.3c01775
Wang M. D. ; Lv G. T. ; An H. W. ; Zhang N. Y. ; Wang H. In situ self-assembly of bispecific peptide for cancer immunotherapy . Angew. Chem. Int. Ed. , 2022 , 61 ( 10 ), e 202113649 . doi: 10.1002/anie.202113649 http://dx.doi.org/10.1002/anie.202113649
Zhao Y. D. ; An H. W. ; Mamuti M. ; Zeng X. Z. ; Zheng R. ; Yang J. ; Zhou W. ; Liang Y. X. ; Qin G. G. ; Hou D. Y. ; Liu X. L. ; Wang H. ; Zhao Y. L. ; Fang X. H. Reprogramming hypoxic tumor-associated macrophages by nanoglycoclusters for boosted cancer immunotherapy . Adv. Mater. , 2023 , 35 ( 24 ), e 2211332 . doi: 10.1002/adma.202211332 http://dx.doi.org/10.1002/adma.202211332
Xiao W. Y. ; Wang Y. ; An H. W. ; Hou D. Y. ; Mamuti M. ; Wang M. D. ; Wang J. ; Xu W. H. ; Hu L. M. ; Wang H. Click reaction-assisted peptide immune checkpoint blockade for solid tumor treatment . ACS Appl. Mater. Interfaces , 2020 , 12 ( 36 ), 40042 - 40051 . doi: 10.1021/acsami.0c10166 http://dx.doi.org/10.1021/acsami.0c10166
Mamuti M. ; Wang Y. ; Zhao Y. D. ; Wang J. Q. ; Wang J. ; Fan Y. L. ; Xiao W. Y. ; Hou D. Y. ; Yang J. ; Zheng R. ; An H. W. ; Wang H. A polyvalent peptide CD40 nanoagonist for targeted modulation of dendritic cells and amplified cancer immunotherapy . Adv. Mater. , 2022 , 34 ( 24 ), e 2109432 . doi: 10.1002/adma.202109432 http://dx.doi.org/10.1002/adma.202109432
Zheng M. X. ; Li Z. ; Liu L. F. ; Li M. ; Paluzzi V. E. ; Hyun Choi J. ; Mao C. D. Kinetic DNA self-assembly: simultaneously co-folding complementary DNA strands into identical nanostructures . J. Am. Chem. Soc. , 2021 , 143 ( 48 ), 20363 - 20367 . doi: 10.1021/jacs.1c09925 http://dx.doi.org/10.1021/jacs.1c09925
Yang X. Q. ; Yang L. J. ; Yang D. L. ; Li M. ; Wang P. F. In situ DNA self-assembly on the cell surface drives unidirectional clustering of membrane proteins for the modulation of cell behaviors . Nano Lett. , 2022 , 22 ( 8 ), 3410 - 3416 . doi: 10.1021/acs.nanolett.2c00680 http://dx.doi.org/10.1021/acs.nanolett.2c00680
Li Z. H. ; Yang M. ; Shu Y. ; Wang J. H. DNA hairpin self-assembly on cell membrane triggered by Dual-aptamer logic circuit for cancer cell recognition and photodynamic therapy . Sens. Actuat. B Chem. , 2023 , 391 , 134063 . doi: 10.1016/j.snb.2023.134063 http://dx.doi.org/10.1016/j.snb.2023.134063
Mao M. ; Lin Z. ; Chen L. ; Zou Z. Y. ; Zhang J. ; Dou Q. H. ; Wu J. C. ; Chen J. L. ; Wu M. H. ; Niu L. ; Fan C. H. ; Zhang Y. Q. Modular DNA-origami-based nanoarrays enhance cell binding affinity through the "lock-and-key" interaction . J. Am. Chem. Soc. , 2023 , 145 ( 9 ), 5447 - 5455 . doi: 10.1021/jacs.2c13825 http://dx.doi.org/10.1021/jacs.2c13825
Li J. ; Xun K. Y. ; Pei K. ; Liu X. J. ; Peng X. Y. ; Du Y. L. ; Qiu L. P. ; Tan W. H. Cell-membrane-anchored DNA nanoplatform for programming cellular interactions . J. Am. Chem. Soc. , 2019 , 141 ( 45 ), 18013 - 18020 . doi: 10.1021/jacs.9b04725 http://dx.doi.org/10.1021/jacs.9b04725
Du Y. L. ; Lyu Y. F. ; Lin J. ; Ma C. R. ; Zhang Q. ; Zhang Y. T. ; Qiu L. P. ; Tan W. H. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell-T-cell contact in elevated T-cell receptor triggering . Nat. Nanotechnol. , 2023 , 18 ( 7 ), 818 - 827 . doi: 10.1038/s41565-023-01333-2 http://dx.doi.org/10.1038/s41565-023-01333-2
Henning-Knechtel A. ; Knechtel J. ; Magzoub M. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels . Nucleic Acids Res. , 2017 , 45 ( 21 ), 12057 - 12068 . doi: 10.1093/nar/gkx990 http://dx.doi.org/10.1093/nar/gkx990
Spruijt E. ; Tusk S. E. ; Bayley H. DNA scaffolds support stable and uniform peptide nanopores . Nat. Nanotechnol. , 2018 , 13 ( 8 ), 739 - 745 . doi: 10.1038/s41565-018-0139-6 http://dx.doi.org/10.1038/s41565-018-0139-6
Fennouri A. ; List J. ; Ducrey J. ; Dupasquier J. ; Sukyte V. ; Mayer S. F. ; Vargas R. D. ; Pascual Fernandez L. ; Bertani F. ; Rodriguez Gonzalo S. ; Yang J. ; Mayer M. Tuning the diameter, stability, and membrane affinity of peptide pores by DNA-programmed self-assembly . ACS Nano , 2021 , 15 ( 7 ), 11263 - 11275 . doi: 10.1021/acsnano.0c10311 http://dx.doi.org/10.1021/acsnano.0c10311
Lin Y. F. ; Yang J. ; Yang Q. L. ; Zeng S. ; Zhang J. Y. ; Zhu Y. X. ; Tong Y. X. ; Li L. ; Tan W. Q. ; Chen D. H. ; Sun Q. M. PTK 2promotes TBKB1 and STING oligomerization and enhances the STING-TBK1 signaling. Nat. Commun. , 2023 , 14 ( 1 ), 7567 . doi: 10.1038/s41467-023-43419-4 http://dx.doi.org/10.1038/s41467-023-43419-4
Wu X. R. ; Yang Z. H. ; Wu J. F. ; Han J. H. Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity . Immunity , 2023 , 56 ( 5 ), 926 - 943 .e 7 . doi: 10.1016/j.immuni.2023.02.014 http://dx.doi.org/10.1016/j.immuni.2023.02.014
Sun Y. ; Yang X. N. ; Yang S. S. ; Lyu Y. Z. ; Zhang B. ; Liu K. W. ; Li N. ; Cui J. C. ; Huang G. X. ; Liu C. L. ; Xu J. ; Mi J. Q. ; Chen Z. ; Fan X. H. ; Chen S. J. ; Chen S. Antigen-induced chimeric antigen receptor multimerization amplifies on-tumor cytotoxicity . Signal Transduct. Target. Ther. , 2023 , 8 ( 1 ), 445 . doi: 10.1038/s41392-023-01686-z http://dx.doi.org/10.1038/s41392-023-01686-z
Wang Z. M. ; Xie S. T. ; Wu L. M. ; Chen F. M. ; Qiu L. P. ; Tan W. H. Aptamer-functionalized nanodevices for dynamic manipulation of membrane receptor signaling in living cells . Nano Lett. , 2022 , 22 ( 19 ), 7853 - 7859 . doi: 10.1021/acs.nanolett.2c02522 http://dx.doi.org/10.1021/acs.nanolett.2c02522
Zhang L. ; Jing D. ; Jiang N. ; Rojalin T. ; Baehr C. M. ; Zhang D. L. ; Xiao W. W. ; Wu Y. ; Cong Z. Q. ; Li J. J. ; Li Y. P. ; Wang L. ; Lam K. S. Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo . Nat. Nanotechnol. , 2020 , 15 ( 2 ), 145 - 153 . doi: 10.1038/s41565-019-0626-4 http://dx.doi.org/10.1038/s41565-019-0626-4
Guo R. C. ; Zhang X. H. ; Fan P. S. ; Song B. L. ; Li Z. X. ; Duan Z. Y. ; Qiao Z. Y. ; Wang H. In vivo self-assembly indu ced cell membrane phase separation for improved peptide drug internalization . Angew. Chem. Int. Ed. , 2021 , 60 ( 47 ), 25128 - 25134 . doi: 10.1002/anie.202111839 http://dx.doi.org/10.1002/anie.202111839
Yang J. ; Zheng R. ; Mamuti M. ; Hou D. Y. ; Zhao Y. D. ; An H. W. ; Wang H. ; Zhao Y. L. Oncolytic peptide nanomachine circumvents chemo resistance of renal cell carcinoma . Biomaterials , 2022 , 284 , 121488 . doi: 10.1016/j.biomaterials.2022.121488 http://dx.doi.org/10.1016/j.biomaterials.2022.121488
De Belly H. ; Paluch E. K. ; Chalut K. J. Interplay between mechanics and signalling in regulating cell fate . Nat. Rev. Mol. Cell Biol. , 2022 , 23 ( 7 ), 465 - 480 . doi: 10.1038/s41580-022-00472-z http://dx.doi.org/10.1038/s41580-022-00472-z
Kohout V. R. ; Wardzala C. L. ; Kramer J. R. Synthesis and biomedical applications of mucin mimic materials . Adv. Drug Deliv. Rev. , 2022 , 191 , 114540 . doi: 10.1016/j.addr.2022.114540 http://dx.doi.org/10.1016/j.addr.2022.114540
Hyun J. Y. ; Pai J. ; Shin I. The glycan microarray story from construction to applications . Acc. Chem. Res. , 2017 , 50 ( 4 ), 1069 - 1078 . doi: 10.1021/acs.accounts.7b00043 http://dx.doi.org/10.1021/acs.accounts.7b00043
Kuo J. C. H. ; Gandhi J. G. ; Zia R. N. ; Paszek M. J. Physical biology of the cancer cell glycocalyx . Nat. Phys. , 2018 , 14 ( 7 ), 658 - 669 . doi: 10.1038/s41567-018-0186-9 http://dx.doi.org/10.1038/s41567-018-0186-9
Zhong Y. H. ; Xu L. J. ; Yang C. ; Xu L. ; Wang G. Y. ; Guo Y. N. ; Cheng S. T. ; Tian X. ; Wang C. J. ; Xie R. ; Wang X. J. ; Ding L. ; Ju H. X. Site-selected in situ polymerization for living cell surface engineering . Nat. Commun. , 2023 , 14 ( 1 ), 7285 . doi: 10.1038/s41467-023-43161-x http://dx.doi.org/10.1038/s41467-023-43161-x
Mierke C. T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells . Rep. Prog. Phys. , 2019 , 82 ( 6 ), 064602 . doi: 10.1088/1361-6633/ab1628 http://dx.doi.org/10.1088/1361-6633/ab1628
Guo P. ; Wang D. ; Zhang S. M. ; Cheng D. ; Wu S. Y. ; Zuo X. B. ; Jiang Y. B. ; Jiang T. Reassembly of peptide nanofibrils on live cell surfaces promotes cell-cell interactions . Nano Lett. , 2023 , 23 ( 14 ), 6386 - 6392 . doi: 10.1021/acs.nanolett.3c01100 http://dx.doi.org/10.1021/acs.nanolett.3c01100
Guo Z. Z. ; Zhang L. L. ; Yang Q. X. ; Peng R. Z. ; Yuan X. ; Xu L. J. ; Wang Z. M. ; Chen F. M. ; Huang H. D. ; Liu Q. L. ; Tan W. H. Manipulation of multiple cell-cell interactions by tunable DNA scaffold networks . Angew. Chem. Int. Ed. , 2022 , 61 ( 7 ), e 202111151 . doi: 10.1002/anie.202111151 http://dx.doi.org/10.1002/anie.202111151
Barata P. C. ; Rini B. I. Treatment of renal cell carcinoma: current status and future directions . CA Cancer J. Clin. , 2017 , 67 ( 6 ), 507 - 524 . doi: 10.3322/caac.21411 http://dx.doi.org/10.3322/caac.21411
Feng Z. ; Wang H. M. ; Wang S. Y. ; Zhang Q. ; Zhang X. X. ; Rodal A. A. ; Xu B. Enzymatic assemblies disrupt the membrane and target endoplasmic reticulum for selective cancer cell death . J. Am. Chem. Soc. , 2018 , 140 ( 30 ), 9566 - 9573 . doi: 10.1021/jacs.8b04641 http://dx.doi.org/10.1021/jacs.8b04641
Jeena M. T. ; Palanikumar L. ; Go E. M. ; Kim I. ; Kang M. G. ; Lee S. ; Park S. ; Choi H. ; Kim C. ; Jin S. M. ; Bae S. C. ; Rhee H. W. ; Lee E. ; Kwak S. K. ; Ryu J. H. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction . Nat. Commun. , 2017 , 8 ( 1 ), 26 . doi: 10.1038/s41467-017-00047-z http://dx.doi.org/10.1038/s41467-017-00047-z
Wang H. M. ; Feng Z. ; Del Signore S. J. ; Rodal A. A. ; Xu B. Active probes for imaging membrane dynamics of live cells with high spatial and temporal resolution over extended time scales and areas . J. Am. Chem. Soc. , 2018 , 140 ( 10 ), 3505 - 3509 . doi: 10.1021/jacs.7b13307 http://dx.doi.org/10.1021/jacs.7b13307
Wang Z. Q. ; An H. W. ; Hou D. Y. ; Wang M. D. ; Zeng X. Z. ; Zheng R. ; Wang L. ; Wang K. L. ; Wang H. ; Xu W. H. Addressable peptide self-assembly on the cancer cell membrane for sensitizing chemotherapy of renal cell carcinoma . Adv. Mater. , 2019 , 31 ( 11 ), e 1807175 . doi: 10.1002/adma.201807175 http://dx.doi.org/10.1002/adma.201807175
Wang Q. ; Cao H. M. ; Hou X. X. ; Wang D. Y. ; Wang Z. L. ; Shang Y. ; Zhang S. Q. ; Liu J. J. ; Ren C. H. ; Liu J. F. Cancer stem-like cells-oriented surface self-assembly to conquer radioresistance . Adv. Mater. , 2023 , 35 ( 38 ), e 2302916 . doi: 10.1002/adma.202302916 http://dx.doi.org/10.1002/adma.202302916
Chen L. ; Sun X. Q. ; Cheng K. ; Topham P. D. ; Xu M. M. ; Jia Y. F. ; Dong D. H. ; Wang S. ; Liu Y. ; Wang L. G. ; Yu Q. Q. Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy . Adv. Fiber Mater. , 2022 , 4 ( 6 ), 1669 - 1684 . doi: 10.1007/s42765-022-00199-8 http://dx.doi.org/10.1007/s42765-022-00199-8
Long Z. ; Hu J. J. ; Yuan L. Z. ; Duan C. ; Dai J. ; Zhen S. J. ; Zhao Z. J. ; Lou X. D. ; Xia F. A cell membrane-anchored nanoassembly with self-reporting property for enhanced second near-infrared photothermal therapy . Nano Today , 2021 , 41 , 101312 . doi: 10.1016/j.nantod.2021.101312 http://dx.doi.org/10.1016/j.nantod.2021.101312
Jiang Y. ; Krishnan N. ; Zhou J. R. ; Chekuri S. ; Wei X. L. ; Kroll A. V. ; Yu C. L. ; Duan Y. O. ; Gao W. W. ; Fang R. H. ; Zhang L. F. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity . Adv. Mater. , 2020 , 32 ( 30 ), 2001808 . doi: 10.1002/adma.202001808 http://dx.doi.org/10.1002/adma.202001808
Xiao P. ; Wang J. ; Zhao Z. T. ; Liu X. C. ; Sun X. S. ; Wang D. G. ; Li Y. P. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy . Nano Lett. , 2021 , 21 ( 5 ), 2094 - 2103 . doi: 10.1021/acs.nanolett.0c04783 http://dx.doi.org/10.1021/acs.nanolett.0c04783
Lv G. T. ; Chen Q. H. ; Wang M. D. ; Ye X. W. ; Liu Y. X. ; Liu S. ; Wang Q. T. ; Lai W. J. ; Yang P. P. ; Wang H. Inter-crosslinking peptide augments 4 - 1 BB receptor clustering for cancer immunotherapy. Nano Today , 2023 , 53 , 102035 . doi: 10.1016/j.nantod.2023.102035 http://dx.doi.org/10.1016/j.nantod.2023.102035
Taylor M. J. ; Husain K. ; Gartner Z. J. ; Mayor S. ; Vale R. D. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination . Cell , 2017 , 169 ( 1 ), 108 - 119 .e 20 . doi: 10.1016/j.cell.2017.03.006 http://dx.doi.org/10.1016/j.cell.2017.03.006
Ma P. Q. ; Liu T. X. ; Li H. D. ; Yin B. C. ; Ye B. C. Nano-biohybrid DNA engager that reprograms the T-cell receptor . J. Am. Chem. Soc. , 2022 , 144 ( 49 ), 22458 - 22469 . doi: 10.1021/jacs.2c05903 http://dx.doi.org/10.1021/jacs.2c05903
0
Views
1780
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution