

浏览全部资源
扫码关注微信
1.上海市先进聚合物材料重点实验室 华东理工大学材料科学与工程学院 上海 200237
2.上海交通大学口腔医学院 上海交通大学医学院附属第九人民医院 上海 200011
Han Miao, E-mail: hmiao@ecust.edu.cn
Shao-liang Lin, E-mail: slin@ecust.edu.cn
Published:20 December 2024,
Published Online:14 October 2024,
Received:29 May 2024,
Accepted:2024-07-29
移动端阅览
许神剑, 杨思卿, 缪涵, 杨溪, 林绍梁. 偶氮苯接枝的聚离子液体的合成及其多功能光学应用. 高分子学报, 2024, 55(12), 1696-1705
Xu, S. J.; Yang, S. Q.; Miao, H; Yang, X; Lin, S. L. Synthesis of azobenzene grafted poly(ionic liquid)s and its multifunctional optical applications. Acta Polymerica Sinica, 2024, 55(12), 1696-1705
许神剑, 杨思卿, 缪涵, 杨溪, 林绍梁. 偶氮苯接枝的聚离子液体的合成及其多功能光学应用. 高分子学报, 2024, 55(12), 1696-1705 DOI: 10.11777/j.issn1000-3304.2024.24143. CSTR: 32057.14.GFZXB.2024.7273.
Xu, S. J.; Yang, S. Q.; Miao, H; Yang, X; Lin, S. L. Synthesis of azobenzene grafted poly(ionic liquid)s and its multifunctional optical applications. Acta Polymerica Sinica, 2024, 55(12), 1696-1705 DOI: 10.11777/j.issn1000-3304.2024.24143. CSTR: 32057.14.GFZXB.2024.7273.
采用传统的自由基聚合和聚合后修饰相结合的策略,设计并合成了一种具有不同偶氮苯接枝率的新型聚离子液体(PIL-Azo-
x
),并系统地研究了其物理化学性质和光学性能. 利用紫外-可见分光光度计(UV-Vis)对聚离子液体薄膜的光致异构化、透射光谱、散射光谱和透射雾度进行了详细表征. 结果表明,通过简单的浇铸法制备的薄膜具有强紫外屏蔽性能(200~400 nm)、光诱导的透过率可调谐性能(400~600 nm)、高透明度(600~800 nm)、良好的热稳定性和极佳的酸碱稳定性等优点. 进一步,结合掩膜版法,该薄膜还可以重复定制不同的透明图案. 这种偶氮苯接枝的聚离子液体薄膜有望推动多功能光学涂层、智能窗户等领域的发展.
Three kinds of poly(ionic liquid)s (PIL-Azo-
x
) with different grafting ratios of azobenzene (10%
30%
and 50%) were successfully synthesized by using conventional free radical polymerization and post-polymerization modification strategies. The initial decomposition temperatures of PIL-Azo-
x
were higher than 300 ℃
indicating good thermal stability. The films prepared by simple casting method exhibited excellent UV shielding performance in the 200-400 nm band
which can block almost all UV rays; in the 400-600 nm band
they have tunable transmittance performance
which can be reversibly changed under the irradiation of 365 nm UV and 450 nm visible light
and the transmittance decreases accordingly with the increase of the content of azobenzene; in the 600-800 nm band
they show a high transmittance performance
which can be reversed with an increase in the content of azobenzene. In addition
the pure PIL-Azo-
x
casted films have excellent acid and alkali resistance
and the transmission spectra of the films remain almost unchanged after immersion in a pH=2 HCl solution or pH=12 NaOH solution for 6 h
which makes them suitable for the more severe environments. Finally
its application in the field of pattern writing and erasing is demonstrated in combination with the mask plate method
in which the transparent film can be repeatedly customized with different patterns under the irradiation of 365 nm UV light and 450 nm visible light. These poly(ionic liquid) films with strong UV shielding
tunable
transmittance
high transparency
good thermal stability
and excellent acid-base stability are expected to contribute to the development of multifunctional optical coatings
smart windows
and other fields.
聚离子液体偶氮苯紫外屏蔽光响应高透过率
Poly(ionic liquid)sAzobenzeneUV-shieldingPhoto-responseHigh-transparency
Liu Q. H.; Wang S. Y.; Zhao Z. Y.; Tong J. H.; Urban M. W.Electrically accelerated self-healable polyionic liquid copolymers. Small, 2022, 18(24), e2201952. doi:10.1002/smll.202201952http://dx.doi.org/10.1002/smll.202201952
Guo J. N.; Sun Z.; Zhou Y. J.; Yan F.Poly(ionic liquid)-based energy and electronic devices. Chin. J. Chem., 2022, 40(9), 1099-1108. doi:10.1002/cjoc.202100820http://dx.doi.org/10.1002/cjoc.202100820
Li Q. N.; Li W. Z.; Liu Z. Y.; Zheng S. J.; Wang X. W.; Xiong J. F.; Yan F.Poly(ionic liquid) double-network elastomers with high-impact resistance enhanced by cation-π interactions. Adv. Mater., 2024, 36(13), 2311214. doi:10.1002/adma.202311214http://dx.doi.org/10.1002/adma.202311214
Li Q.; Yan F.; Texter J.Polymerized and colloidal ionic liquids─syntheses and applications. Chem. Rev., 2024, 124(7), 3813-3931. doi:10.1021/acs.chemrev.3c00429http://dx.doi.org/10.1021/acs.chemrev.3c00429
Liang Q. F.; Zhang H. T.; Cao Y. C.; Cao Y. F.; Li R. A.Transparent, stretchable, underwater self-healing, self-adhesive, and recyclable eutectogels enabled by poly(ionic liquid)/eutectic networks. ACS Appl. Polym. Mater., 2024, 6(7), 3966-3974. doi:10.1021/acsapm.4c00014http://dx.doi.org/10.1021/acsapm.4c00014
Ye T. L.; Zhang X. Y.; Wen J. Q.; Sun X. C.; He D. Q.; Li W. X.Multifunctional visualized electronic skin based on a solvatochromic poly(ionic liquid) ionogel. Chem. Eng. J., 2023, 477, 147182. doi:10.1016/j.cej.2023.147182http://dx.doi.org/10.1016/j.cej.2023.147182
He X. L.; Dong J.; Zhang X. N.; Bai X. Y.; Zhang C.; Wei D. S.Self-healing, anti-fatigue, antimicrobial ionic conductive hydrogels based on choline-amino acid polyionic liquids for multi-functional sensors. Chem. Eng. J., 2022, 435, 135168. doi:10.1016/j.cej.2022.135168http://dx.doi.org/10.1016/j.cej.2022.135168
Ying A. G.; Li M. S.; Lu X. T.; Li S. N.; Wang L. M.; Liu Z. Q.; Liu Y. J.Sandwich like poly(ionic liquid)s functionalized microspheres: efficient interfacial catalysts for preparation of biodiesel. Chem. Eng. J., 2023, 473, 145361. doi:10.1016/j.cej.2023.145361http://dx.doi.org/10.1016/j.cej.2023.145361
Hu H.; Wang B. S.; Chen B. H.; Deng X.; Gao G. H.Swellable poly(ionic liquid)s: synthesis, structure-property relationships and applications. Prog. Polym. Sci., 2022, 134, 101607. doi:10.1016/j.progpolymsci.2022.101607http://dx.doi.org/10.1016/j.progpolymsci.2022.101607
Qu X. Y.; Liu J. Y.; Wang S. Y.; Shao J. J.; Wang Q.; Wang W. J.; Gan L.; Zhong L. P.; Dong X. C.; Zhao Y. X.Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics. Chem. Eng. J., 2023, 453, 139785. doi:10.1016/j.cej.2022.139785http://dx.doi.org/10.1016/j.cej.2022.139785
Matczuk M.; Timerbaev A. R.; Keppler B. K.; Ruzik L.Ionic liquid-mediated drug delivery: a review on progress and challenges focused on poly(ionic liquid) nanoplatforms. J. Mol. Liq., 2024, 399, 124403. doi:10.1016/j.molliq.2024.124403http://dx.doi.org/10.1016/j.molliq.2024.124403
Mecerreyes D.Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci., 2011, 36(12), 1629-1648. doi:10.1016/j.progpolymsci.2011.05.007http://dx.doi.org/10.1016/j.progpolymsci.2011.05.007
潘明光, 赵永升, 曾小勤, 邹建新. 偶氮苯基型离子液体溶液对空气中湿度的变色响应. 物理化学学报, 2019, 35(6), 624-629. doi:10.3866/PKU.WHXB201807035http://dx.doi.org/10.3866/PKU.WHXB201807035
Chang C. W.; Wu C. T.; Lin Y. L.; Lee L. R.; Lin H. W.; Gautam B.; Tseng Y. H.; Liao C. W.; Chang C. T.; Chen J. T.Developing stretchable and photo-responsive conductive films by incorporation of spiropyran into poly(ionic liquid)s. ACS Appl. Polym. Mater., 2023, 5(6), 4210-4216. doi:10.1021/acsapm.3c00422http://dx.doi.org/10.1021/acsapm.3c00422
Tang Y. T.; Zhang Y. G.; Chen X.; Xie X. W.; Zhou N.; Dai Z. F.; Xiong Y. B.Up/down tuning of poly(ionic liquid)s in aqueous two-phase systems. Angew. Chem. Int. Ed, 2023, 62(4), e202215722. doi:10.1002/anie.202215722http://dx.doi.org/10.1002/anie.202215722
Sun J. K.; Kochovski Z.; Zhang W. Y.; Kirmse H.; Lu Y.; Antonietti M.; Yuan J. Y.General synthetic route toward highly dispersed metal clusters enabled by poly(ionic liquid)s. J. Am. Chem. Soc., 2017, 139(26), 8971-8976. doi:10.1021/jacs.7b03357http://dx.doi.org/10.1021/jacs.7b03357
Pan J. L.; Jin X.; Zhang Z. L.; Wang L. M.; Liu Y. D.; Choi H. J.Temperature-dependent electrorheology of a suspension based on copolymeric P(NIPAM-co-[AMIm]Cl) colloidal particles. Smart Mater. Struct., 2020, 29(12), 124001. doi:10.1088/1361-665x/abbff7http://dx.doi.org/10.1088/1361-665x/abbff7
Rathod P. V.; Puguan J. M. C.; Kim H.Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation. Chem. Eng. J., 2021, 422, 130065. doi:10.1016/j.cej.2021.130065http://dx.doi.org/10.1016/j.cej.2021.130065
骆沙曼, 孙浩哲, 颜世强, 黄晖, 张炜佳, 韦嘉, 俞燕蕾. 含偶氮苯的光致形变液晶聚合物的细胞生物相容性. 应用化学, 2021, 38(10), 1371-1381. doi:10.19894/j.issn.1000-0518.210380http://dx.doi.org/10.19894/j.issn.1000-0518.210380
黄鑫, 庞馨蕾, 秦朗, 俞燕蕾. 室温光致形变主链型交联液晶高分子纤维执行器. 高分子学报, 2022, 53(11), 1324-1331. doi:10.11777/j.issn1000-3304.2022.22103http://dx.doi.org/10.11777/j.issn1000-3304.2022.22103
Wang K.; Yu H. T.; Gao J. L.; Feng Y. Y.; Feng W.Optimizing the performance of phase-change azobenzene: from trial and error to machine learning. J. Mater. Chem. C, 2024, 12(11), 3811-3837. doi:10.1039/d4tc00450ghttp://dx.doi.org/10.1039/d4tc00450g
袁晨瑞, 许文聪, 梁烁丰, 吴思. 光致固液转变高分子. 高分子学报, 2020, 51(10), 1130-1139. doi:10.11777/j.issn1000-3304.2020.20112http://dx.doi.org/10.11777/j.issn1000-3304.2020.20112
Zheng X. X.; Jia Y. N.; Chen A. H.Azobenzene-containing liquid crystalline composites for robust ultraviolet detectors based on conversion of illuminance-mechanical stress-electric signals. Nat. Commun., 2021, 12(1), 4875. doi:10.1038/s41467-021-25178-2http://dx.doi.org/10.1038/s41467-021-25178-2
Yang X. Y.; Jin H. B.; Tao X. F.; Yao Y.; Xie Y. F.; Lin S. L.Photo-responsive azobenzene-containing inverse opal films for information security. Adv. Funct. Mater., 2023, 33(42), 2304424. doi:10.1002/adfm.202304424http://dx.doi.org/10.1002/adfm.202304424
Liu C. W.; Steppert A. K.; Liu Y. Z.; Weis P.; Hu J. Y.; Nie C.; Xu W. C.; Kuehne A. J. C.; Wu S.A photopatternable conjugated polymer with thermal-annealing-promoted interchain stacking for highly stable anti-counterfeiting materials. Adv. Mater., 2023, 35(36), e2303120. doi:10.1002/adma.202303120http://dx.doi.org/10.1002/adma.202303120
Liu L.; del Pozo M.; Mohseninejad F.; Debije M. G.; Broer D. J.; Schenning A. P. H. J.Light tracking and light guiding fiber arrays by adjusting the location of photoresponsive azobenzene in liquid crystal networks. Adv. Opt. Mater., 2020, 8(18), 2000732. doi:10.1002/adom.202000732http://dx.doi.org/10.1002/adom.202000732
Wang W.; Du C.; Wang X. F.; He X. H.; Lin J. P.; Li L.; Lin S. L.Directional photomanipulation of breath figure arrays. Angew. Chem. Int. Ed, 2014, 53(45), 12116-12119. doi:10.1002/anie.201407230http://dx.doi.org/10.1002/anie.201407230
Wang T. Z.; Wang Q.; Wang Y. C.; Da Y. L.; Zhou W.; Shao Y.; Li D. B.; Zhan S. H.; Yuan J. Y.; Wang H.Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem. Int. Ed, 2019, 58(38), 13466-13471. doi:10.1002/anie.201907752http://dx.doi.org/10.1002/anie.201907752
He Y.; Ye H. C.; You T. T.; Xu F.Sustainable and multifunctional cellulose-lignin films with excellent antibacterial and UV-shielding for active food packaging. Food Hydrocoll., 2023, 137, 108355. doi:10.1016/j.foodhyd.2022.108355http://dx.doi.org/10.1016/j.foodhyd.2022.108355
Lu J. Y.; Fang J. C.; Li J. Q.; Zhu L. P.Engineering highly transparent UV-shielding films with disassembled polydopamine oligomers as light adsorber. Appl. Surf. Sci., 2021, 550, 149284. doi:10.1016/j.apsusc.2021.149284http://dx.doi.org/10.1016/j.apsusc.2021.149284
Bian H. Y.; Chen L. D.; Dong M. L.; Wang L. Y.; Wang R. B.; Zhou X. L.; Wu C.; Wang X.; Ji X. X.; Dai H. Q.Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance. Int. J. Biol. Macromol., 2021, 166, 1578-1585. doi:10.1016/j.ijbiomac.2020.11.037http://dx.doi.org/10.1016/j.ijbiomac.2020.11.037
Jiang Y.; Wang X. Y.; Meng Z. Q.; Zhang M. Y.; Wang S. F.; Liu X. Y.Weakening fibril-fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils. Green Chem., 2024, 26(2), 879-894. doi:10.1039/d3gc04029ahttp://dx.doi.org/10.1039/d3gc04029a
Pugliese M.; Scarfiello R.; Prontera C. T.; Giannuzzi R.; Bianco G. V.; Bruno G.; Carallo S.; Mariano F.; Maggiore A.; Carbone L.; Gigli G.; Maiorano V.Visible light-near-infrared dual-band electrochromic device. ACS Sustain. Chem. Eng., 2023, 11(26), 9601-9612. doi:10.1021/acssuschemeng.3c00865http://dx.doi.org/10.1021/acssuschemeng.3c00865
Liu Y. Z.; Liang S. F.; Yuan C. R.; Best A.; Kappl M.; Koynov K.; Butt H. J.; Wu S.Fabrication of anticounterfeiting nanocomposites with multiple security features via integration of a photoresponsive polymer and upconverting nanoparticles. Adv. Funct. Mater., 2021, 31(37), 2103908. doi:10.1002/adfm.202103908http://dx.doi.org/10.1002/adfm.202103908
Li J. J.; Dong J. H.; Wang H.; Yang X. Y.; Chen J. Z.; Gu J. L.; Lin S. L.Photoresponsive superhydrophobic membrane crosslinked by bipedal pillararenes with patterned wettability. Adv. Mater. Interfaces, 2021, 8(23), 2101627. doi:10.1002/admi.202101627http://dx.doi.org/10.1002/admi.202101627
Li M.; Fu S. Y.Photochromic holo-cellulose wood-based aerogel grafted azobenzene derivative by SI-ATRP. Carbohydr. Polym., 2021, 259, 117736. doi:10.1016/j.carbpol.2021.117736http://dx.doi.org/10.1016/j.carbpol.2021.117736
0
Views
183
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802024621