浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海市先进聚合物材料重点实验室 上海 200237
Hai-bao Jin, E-mail: haibaojin@ecust.edu.cn
Shao-liang Lin, E-mail: slin@ecust.edu.cn
Published:20 January 2025,
Published Online:27 September 2024,
Received:05 June 2024,
Accepted:2024-08-19
移动端阅览
朱熹萌, 张栋鑫, 刘帆, 武鹏超, 靳海宝, 林绍梁. 特定序列两亲性偶氮苯交替类肽的自组装与光响应行为研究. 高分子学报, 2025, 56(1), 104-113
Zhu X. M.; Zhang D. X.; Liu F.; Wu P. C.; Jin H. B.; Lin S. L. Self-assembly and photo-responsive behavior of sequence-defined amphiphilic azobenzene alternating peptoids. Acta Polymerica Sinica, 2025, 56(1), 104-113
朱熹萌, 张栋鑫, 刘帆, 武鹏超, 靳海宝, 林绍梁. 特定序列两亲性偶氮苯交替类肽的自组装与光响应行为研究. 高分子学报, 2025, 56(1), 104-113 DOI: 10.11777/j.issn1000-3304.2024.24156. CSTR: 32057.14.GFZXB.2024.7275.
Zhu X. M.; Zhang D. X.; Liu F.; Wu P. C.; Jin H. B.; Lin S. L. Self-assembly and photo-responsive behavior of sequence-defined amphiphilic azobenzene alternating peptoids. Acta Polymerica Sinica, 2025, 56(1), 104-113 DOI: 10.11777/j.issn1000-3304.2024.24156. CSTR: 32057.14.GFZXB.2024.7275.
刺激响应型序列可控聚合物在传感器、光电器件、信息存储、生物医药等领域中具有广阔的应用前景,因此其精准合成一直是一项极具挑战性的研究课题. 本工作通过固相亚单体合成法,设计并合成了一种新型特定序列结构、光响应的两亲性偶氮苯交替类肽,并通过溶液自组装制备了结构均匀的蠕虫状胶束. 利用耗散粒子动力学模拟,证实了侧链共轭堆积组装机理,及蠕虫状胶束内部两亲性偶氮苯交替类肽的排列方式. 在紫外光和可见光的交替照射下,聚集体能够实现从蠕虫状胶束到球形胶束的可逆光致结构转变. 本研究为刺激响应型序列可控聚合物的自组装研究提供了理论指导.
Stimuli-responsive sequence-controlled polymers are capable of making reversible changes in physical and chemical property under external stimuli such as light
heat
electrical fields
and pH
exhibiting significant applications in the fields of sensing
optoelectronics
information storage
and biomedicines. However
the precise synthesis of stimuli-responsive sequence-controlled polymers remains a tremendous challenge. This study reported the design and synthesis of a photo-responsive and sequence-defined amphiphilic azobenzene alternating peptoids (AAAPs) of (NeAzo-
alt
-NEG
3
)
9
using the solid-phase sub-monomer synthesis technique. The self-assembly of (NeAzo-
alt
-NEG
3
)
9
in the aqueous solution formed uniform worm-like micelles. Dissipative particle dynamics simulations demonstrated the pendants conjugate packing mechanisms and the molecular stacking of AAAPs in the aggregates. The different stage of self-assembly was further confirmed by time-dependent transmission electron microscopy (TEM) characterizations. The self-assembly of AAAPs into uniform worm-like micelles was an active growth procedure from amorphous spherical micelles to crystalline worm-like micelles
with intermediate states of short nanorods. Additionally
the X-ray diffraction patterns further verified the high-crystalline architecture within the worm-like micelles. Ultraviolet-visible (UV-Vis) spectra in aqueous or THF solutions were recorded to unravel the photo-triggered conformation transition of azobenzene units. Under the alternating irradiation with ultraviolet and visible light
a reversible photo-triggered transformation from worm-like micelles to sphe
rical micelles with an average diameter of (67±12) nm was rendered owing to the photo-isomerization of azobenzene units. Our work provides valuable theoretical insights into the self-assembly of stimuli-responsive sequence-controlled polymers.
两亲性偶氮苯交替类肽固相合成自组装光响应性光致结构转变
Amphiphilic azobenzene alternating peptoidsSolid-phase synthesisSelf-assemblyPhoto-responsive capacityPhoto-triggered structural transformation
Fong C.; Le T.; Drummond C. J.Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem. Soc. Rev., 2012, 41(3), 1297-1322. doi:10.1039/c1cs15148ghttp://dx.doi.org/10.1039/c1cs15148g
Palermo V.; Samorì P.Molecular self-assembly across multiple length scales. Angew. Chem. Int. Ed., 2007, 46(24), 4428-4432. doi:10.1002/anie.200700416http://dx.doi.org/10.1002/anie.200700416
Lutz J. F.; Ouchi M.; Liu D. R.; Sawamoto M.Sequence-controlled polymers. Science, 2013, 341(6146), 1238149. doi:10.1126/science.1238149http://dx.doi.org/10.1126/science.1238149
张留乔, 黄智豪, 张正彪, 朱秀林.序列可控高分子的合成及应用. 高分子学报,. doi:10.11777/j.issn1000-3304.2018.18101http://dx.doi.org/10.11777/j.issn1000-3304.2018.18101
2018, (9), 1144-1154. doi:10.11777/j.issn1000-3304.2018.18101http://dx.doi.org/10.11777/j.issn1000-3304.2018.18101
Shi Q. Q.; Yin H.; Song R. D.; Xu J.; Tan J. J.; Zhou X.; Cen J.; Deng Z. Y.; Tong H. M.; Cui C. H.; Zhang Y. F.; Li X. P.; Zhang Z. B.; Liu S. Y.Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nat. Chem., 2023, 15(2), 257-270. doi:10.1038/s41557-022-01076-yhttp://dx.doi.org/10.1038/s41557-022-01076-y
Austin M. J.; Rosales A. M.Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater. Sci., 2019, 7(2), 490-505. doi:10.1039/c8bm01215fhttp://dx.doi.org/10.1039/c8bm01215f
Zhang Z.; Xiong Y.; Yang P.; Li Y.; Tang R.; Nie X.; Chen G.; Wang L. H.; Hong C. Y.; You Y. Z.Easy access to diverse multiblock copolymers with on-demand blocks via thioester-relayed in-chain cascade copolymerization. Angew. Chem. Int. Ed, 2023, 62(15), e202216685. doi:10.1002/anie.202216685http://dx.doi.org/10.1002/anie.202216685
滕润鑫, 范震, 杜建忠. 肿瘤诊疗多肽/聚氨基酸自组装纳米材料. 高分子学报, 2023, 54(6), 853-869.
Shahrokhinia A.; Rijal S.; Sonmez Baghirzade B.; Scanga R. A.; Biswas P.; Tafazoli S.; Apul O. G.; Reuther J. F.Chain extensions in PhotoATRP-induced self-assembly (PhotoATR-PISA): a route to ultrahigh solids concentrations and click nanoparticle networks as adsorbents for water treatment. Macromolecules, 2022, 55(9), 3699-3710. doi:10.1021/acs.macromol.1c02636http://dx.doi.org/10.1021/acs.macromol.1c02636
Wang Y. X.; Zhang X. G.; Mu J.; Li C. X.Synthesis and pH/sugar/salt-sensitivity study of boronate crosslinked glycopolymer nanoparticles. New J. Chem., 2013, 37(3), 796-803. doi:10.1039/c2nj40998dhttp://dx.doi.org/10.1039/c2nj40998d
Vybornyi O.; Liu S. X.; Häner R.Stimuli-responsive supramolecular polymers from amphiphilic phosphodiester-linked azobenzene trimers. Angew. Chem. Int. Ed., 2021, 60(49), 25872-25877. doi:10.1002/anie.202108745http://dx.doi.org/10.1002/anie.202108745
Lv Y. S.; Wang L. Q.; Liu F.; Feng W. S.; Wei J.; Lin S. L.Self-assembly of amphiphilic alternating copolymers with stimuli-responsive rigid pendant groups. Polym. Chem., 2020, 11(29), 4798-4806. doi:10.1039/d0py00765jhttp://dx.doi.org/10.1039/d0py00765j
Li Y. M.; Liu S. Y.Enzyme-triggered transition from polymeric vesicles to core cross-linked micelles for selective release of antimicrobial agents. Anal. Chim. Acta, 2017, 1(7), 1178-1190. doi:10.11777/j.issn1000-3304.2017.17035http://dx.doi.org/10.11777/j.issn1000-3304.2017.17035
Jiang C. Q.; Xu G. H.; Gao J. P.Stimuli-responsive macromolecular self-assembly. Sustainability, 2022, 14(18), 11738. doi:10.3390/su141811738http://dx.doi.org/10.3390/su141811738
Islam M. R.; Lu Z. Z.; Li X.; Sarker A. K.; Hu L.; Choi P.; Li X.; Hakobyan N.; Serpe M. J.Responsive polymers for analytical applications: a review. Anal. Chim. Acta, 2013, 789, 17-32. doi:10.1016/j.aca.2013.05.009http://dx.doi.org/10.1016/j.aca.2013.05.009
Wang Y.; Feng A.; Yuan J.Application of stimuli-responsive polymer in catalyst systems of gold nanoparticles. Prog. Chem., 2016, 28(7), 1054-1061.
Xiong R. H.; Xu R. X.; Huang C. B.; De Smedt S.; Braeckmans K.Stimuli-responsive nanobubbles for biomedical applications. Chem. Soc. Rev., 2021, 50(9), 5746-5776. doi:10.1039/c9cs00839jhttp://dx.doi.org/10.1039/c9cs00839j
Yuan Y.; Nie T. Q.; Fang Y. F.; You X. R.; Huang H.; Wu J.Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J. Mater. Chem. B, 2022, 10(13), 2077-2096. doi:10.1039/d1tb02683fhttp://dx.doi.org/10.1039/d1tb02683f
Zhang X. H.; Cheng D. B.; Ji L.; An H. W.; Wang D.; Yang Z. X.; Chen H.; Qiao Z. Y.; Wang H.Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging. Nano Lett., 2020, 20(2), 1286-1295. doi:10.1021/acs.nanolett.9b04752http://dx.doi.org/10.1021/acs.nanolett.9b04752
Zuckermann, R. N. Peptoid origins. Pept. Sci., 2011, 96(5), 545-555. doi:10.1002/bip.21573http://dx.doi.org/10.1002/bip.21573
Sun J.; Zuckermann R. N.Peptoid polymers: a highly designable bioinspired material. ACS Nano, 2013, 7(6), 4715-4732. doi:10.1021/nn4015714http://dx.doi.org/10.1021/nn4015714
Zuckermann R. N.; Kerr J. M.; Kent S. B. H.; Moos W. H.Efficient method for the preparation of peptoids[oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc., 1992, 114(26), 10646-10647. doi:10.1021/ja00052a076http://dx.doi.org/10.1021/ja00052a076
Liu J. L.; Cai B.; Cui L. F.; Chen C. L.Peptoid-based hierarchically-structured biomimetic nanomaterials: synthesis, characterization and applications. Sci. China Mater., 2020, 63(7), 1099-1112. doi:10.1007/s40843-020-1296-8http://dx.doi.org/10.1007/s40843-020-1296-8
Knight A. S.; Zhou E. Y.; Francis M. B.; Zuckermann R. N.Sequence programmable peptoid polymers for diverse materials applications. Adv. Mater., 2015, 27(38), 5665-5691. doi:10.1002/adma.201500275http://dx.doi.org/10.1002/adma.201500275
Robertson E. J.; Battigelli A.; Proulx C.; Mannige R. V.; Haxton T. K.; Yun L. S.; Whitelam S.; Zuckermann R. N.Design, synthesis, assembly, and engineering of peptoid nanosheets. Acc. Chem. Res., 2016, 49(3), 379-389. doi:10.1021/acs.accounts.5b00439http://dx.doi.org/10.1021/acs.accounts.5b00439
Jin H. B.; Ding Y. H.; Wang M. M.; Song Y.; Liao Z. H.; Newcomb C. J.; Wu X. P.; Tang X. Q.; Li Z.; Lin Y. H.; Yan F.; Jian T. Y.; Mu P.; Chen C. L.Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids. Nat. Commun., 2018, 9(1), 270. doi:10.1038/s41467-017-02059-1http://dx.doi.org/10.1038/s41467-017-02059-1
Sun J.; Jiang X.; Lund R.; Downing K. H.; Balsara N. P.; Zuckermann R. N.Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 3954-3959. doi:10.1073/pnas.1517169113http://dx.doi.org/10.1073/pnas.1517169113
Peng G. P.; Jin H. B.; Liu F.; Yang X. Y.; Sui P. L.; Lin S. L.Biomimetic ultrathin pepsomes for photo-controllable catalysis. Sci. China Chem., 2022, 65(12), 2444-2449. doi:10.1007/s11426-022-1353-4http://dx.doi.org/10.1007/s11426-022-1353-4
Wu P. C.; Sui P. L.; Peng G. P.; Sun Z. C.; Liu F.; Yao W. Q.; Jin H. B.; Lin S. L.Designable photo-responsive micron-scale ultrathin peptoid nanobelts for enhanced performance on hydrogen evolution reaction. Adv. Mater., 2024, 36(16), 2312724. doi:10.1002/adma.202312724http://dx.doi.org/10.1002/adma.202312724
Gohy J. F.; Zhao Y.Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev., 2013, 42(17), 7117-7129. doi:10.1039/c3cs35469ehttp://dx.doi.org/10.1039/c3cs35469e
Qian J.; Zhang L. Z.; Wang Z. H.; Wu S. J.; Jiang X. S.; Lin S. L.; Yao Y.Multiple regulation of dynamic wrinkles based on conjugated copolymer network. Sci. China Mater., 2024, 67(1), 363-371. doi:10.1007/s40843-023-2684-3http://dx.doi.org/10.1007/s40843-023-2684-3
Tamesue S.; Takashima Y.; Yamaguchi H.; Shinkai S.; Harada A.Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed, 2010, 49(41), 7461-7464. doi:10.1002/anie.201003567http://dx.doi.org/10.1002/anie.201003567
Zhao Y. L.; Tao X. F.; Xu B. B.; Liu W. B.; Lin S. L.Robust thiazole-linked covalent organic frameworks with post-modified azobenzene groups: photo-regulated dye adsorption and separation. Adv. Funct. Mater., 2024, 34(34), 2401895. doi:10.1002/adfm.202401895http://dx.doi.org/10.1002/adfm.202401895
0
Views
190
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution