浏览全部资源
扫码关注微信
1.浙江大学 化学工程与低碳技术全国重点实验室 杭州 310058
2.浙江大学衢州研究院 衢州 324000
Received:14 February 2025,
Accepted:25 March 2025,
Published Online:20 June 2025,
移动端阅览
朱丽倩, 肖扬可, 王文俊, 刘平伟, 王青月, 介素云, 胡激江, 姚臻, 李伯耿. 嵌段型热塑性弹性体——现状与进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25036
Zhu, L. Q.; Xiao, Y. K.; Wang, W. J.; Liu, P. W.; Wang, Q. Y.; Jie, S. Y.; Hu, J. J.; Yao, Z.; Li, B. G. State-of-the-art and research progress of block-type thermoplastic elastomers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25036
朱丽倩, 肖扬可, 王文俊, 刘平伟, 王青月, 介素云, 胡激江, 姚臻, 李伯耿. 嵌段型热塑性弹性体——现状与进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25036 DOI: CSTR: 32057.14.GFZXB.2025.7388.
Zhu, L. Q.; Xiao, Y. K.; Wang, W. J.; Liu, P. W.; Wang, Q. Y.; Jie, S. Y.; Hu, J. J.; Yao, Z.; Li, B. G. State-of-the-art and research progress of block-type thermoplastic elastomers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25036 DOI: 10.11777/j.issn1000-3304.2025.25036. CSTR: 32057.14.GFZXB.2025.7388.
热塑性弹性体具有独特的微相分离结构,使其既具备橡胶弹性,又能够在高温下重塑. 嵌段型热塑性弹性体是热塑性弹性体中最典型的品种,其链结构具有多样性,这不仅丰富了嵌段型热塑性弹性体的宏观性能,还使其得到了广泛应用. 本文综述了已工业化的几种嵌段型热塑性弹性体,以及多年来人们为改善它们耐热性、耐化学性和力学性能,在硬段和软段物理改性、化学修饰以及动态共价交联等方面所做的工作;介绍了研究者在物理与化学双重交联的热塑性弹性体构建中发现的形状记忆和自修复功能,以及嵌段型热塑性弹性体的介电性能;展望了嵌段型热塑弹性体在智能电子、仿生机器人等高端领域中的应用前景. 进一步介绍了生物基和生物降解热塑性弹性体,以及以废弃高分子为原料的热塑性弹性体的制备研究.
The unique microphase-separated structure of thermoplastic elastomers endows them with rubber elasticity and remolding ability at high temperatures. Block-type thermoplastic elastomers are the most typical types of thermoplastic elastomers. Due to the diversity of tunable chain structures
the materials exhibit abundant macroscopic properties and wide applications. This article reviews several kinds of industrialized block-type thermoplastic elastomers and the various efforts in improving the heat resistance
chemical resistance
and mechanical properties through the physical modification and chemical modification of hard and soft segments
as well as dynamic covalent cross-linking. This article also describes the shape memory and self-healing functions of thermoplastic elastomers with dual physical and chemical cross-links
as well as the dielectric properties of block-type thermoplastic elastomers
demonstrating their application prospects in high-end fields such as smart electronics and bionic robots. This article further introduces the preparation of bio-based and bio-degradable thermoplastic elastomers
as well as the thermoplastic elastomers from waste or even waste polymers.
Elabd Y. A. ; Hickner M. A. Block copolymers for fuel cells . Macromolecules , 2011 , 44 ( 1 ), 1 - 11 . doi: 10.1021/ma101247c http://dx.doi.org/10.1021/ma101247c
Gonçalves B. F. ; Costa P. ; Oliveira J. ; Ribeiro S. ; Correia V. ; Botelho G. ; Lanceros-Mendez S. Green solvent approach for printable large deformation thermoplastic elastomer based piezoresistive sensors and their suitability for biomedical applications . J. Polym. Sci. Part B Polym. Phys. , 2016 , 54 ( 20 ), 2092 - 2103 . doi: 10.1002/polb.24118 http://dx.doi.org/10.1002/polb.24118
Ning , N ; Li , S ; Wu H. ; Tian H. ; Yao P. ; Hu G. H. ; Tian M. ; Zhang L. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): a review . Prog. Polym. Sci. , 2018 , 79 , 61 - 97 . doi: 10.1016/j.progpolymsci.2017.11.003 http://dx.doi.org/10.1016/j.progpolymsci.2017.11.003
Baeza G. P. Recent advances on the structure-properties relationship of multiblock copolymers . J. Polym. Sci. , 2021 , 59 ( 21 ), 2405 - 2433 . doi: 10.1002/pol.20210406 http://dx.doi.org/10.1002/pol.20210406
Seymour R. B. ; Kauffman G. B. Elastomers: III. Thermoplastic elastomers . J. Chem. Educ. , 1992 , 69 ( 12 ), 967 . doi: 10.1021/ed069p967 http://dx.doi.org/10.1021/ed069p967
Chung L. Z. ; Kou D. L. ; Hu A. T. ; Tsai H. B. Block copolyetheramides. II. Synthesis and morphology of nylon-6 based block copolyetheramides . J. Polym. Sci. A Polym. Chem. , 1992 , 30 ( 5 ), 951 - 953 . doi: 10.1002/pola.1992.080300529 http://dx.doi.org/10.1002/pola.1992.080300529
Wang W. ; Lu W. ; Goodwin A. ; Wang H. ; Yin P. ; Kang N. G. ; Hong K. ; Mays J. W. Recent advances in thermoplastic elastomers from living polymerizations: macromolecular architectures and supramolecular chemistry . Prog. Polym. Sci. , 2019 , 95 , 1 - 31 . doi: 10.1016/j.progpolymsci.2019.04.002 http://dx.doi.org/10.1016/j.progpolymsci.2019.04.002
Szwarc, M. 'living' polymers . Nature , 1956 , 178 ( 4543 ), 1168 - 1169 . doi: 10.1038/1781168a0 http://dx.doi.org/10.1038/1781168a0
Szwarc M. ; Levy M. ; Milkovich R. Polymerization initiated by electron transfer to monomer . A new method of formation of block polymers. J. Am. Chem. Soc. , 1956 , 78 ( 11 ), 2656 - 2657 . doi: 10.1021/ja01592a101 http://dx.doi.org/10.1021/ja01592a101
Cunningham R. E. ; Treiber M. R. Preparation and stress-strain properties of ABA-type block polymers of styrene and isoprene or butadiene . J. Appl. Polym. Sci. , 1968 , 12 ( 1 ), 23 - 34 . doi: 10.1002/app.1968.070120104 http://dx.doi.org/10.1002/app.1968.070120104
Yu Y. S. ; Dubois P. ; Teyssié P. ; Jérôme R. Difunctional anionic initiator based on 1,3-diisopropenylbenzene. 5. Effect of polar additives and initiator seeding on the synthesis of poly(styrene- b -butadiene- b -styrene) copolymers . Macromolecules , 1997 , 30 ( 24 ), 7356 - 7362 . doi: 10.1021/ma970095y http://dx.doi.org/10.1021/ma970095y
Ma R. ; Zhang Z. ; Zhang L. Effects of arm number on the properties of transparent elastomers prepared from styrene-butadiene block copolymer . J. Appl. Polym. Sci. , 2006 , 102 ( 1 ), 729 - 736 . doi: 10.1002/app.24307 http://dx.doi.org/10.1002/app.24307
Polacco G. ; Kříž P. ; Filippi S. ; Stastna J. ; Biondi D. ; Zanzotto L. Rheological properties of asphalt/SBS/clay blends . Eur. Polym. J. , 2008 , 44 ( 11 ), 3512 - 3521 . doi: 10.1016/j.eurpolymj.2008.08.032 http://dx.doi.org/10.1016/j.eurpolymj.2008.08.032
Lee J. H. ; Shim G. S. ; Park J. W. ; Kim H. J. ; Kim Y. Adhesion performance and recovery of acrylic pressure-sensitive adhesives thermally crosslinked with styrene-isoprene-styrene elastomer blends for flexible display applications . J. Ind. Eng. Chem. , 2019 , 78 , 461 - 467 . doi: 10.1016/j.jiec.2019.05.019 http://dx.doi.org/10.1016/j.jiec.2019.05.019
Zhao P. ; Song X. ; Dong M. ; Sun H. ; Wu W. ; Zhang R. ; Sun M. ; Zhao X. Preparation and characterization of CQDs/SBS composites and its application performance as asphalt modifier . Constr. Build. Mater , 2022 , 320 , 126312 . doi: 10.1016/j.conbuildmat.2022.126312 http://dx.doi.org/10.1016/j.conbuildmat.2022.126312
李伯耿 , 张明轩 , 刘伟峰 , 王文俊 . 聚烯烃类弹性体——现状与进展 . 化工进展 , 2017 , 36 ( 9 ), 3135 - 3144 .
Okuda J. ; Zimmermann K. H. Functionalized cyclopentadienyl ligands, III . Preparation of cobalt half-sandwich complexes with intramolecular C=C bond coordination. Chem. Ber. , 1990 , 123 ( 8 ), 1641 - 1648 . doi: 10.1002/cber.19901230809 http://dx.doi.org/10.1002/cber.19901230809
Chum P. S. ; Swogger K. W. Olefin polymer technologies: history and recent progress at the Dow Chemical company . Prog. Polym. Sci. , 2008 , 33 ( 8 ), 797 - 819 . doi: 10.1016/j.progpolymsci.2008.05.003 http://dx.doi.org/10.1016/j.progpolymsci.2008.05.003
Arriola D. J. ; Carnahan E. M. ; Hustad P. D. ; Kuhlman R. L. ; Wenzel T. T. Catalytic pr oduction of olefin block copolymers via chain shuttling polymerization . Science , 2006 , 312 ( 5774 ), 714 - 719 . doi: 10.1126/science.1125268 http://dx.doi.org/10.1126/science.1125268
Cao Z. ; Zhou Q. ; Jie S. ; Li B. G. High cis-1,4 hydroxyl-terminated polybutadiene-based polyurethanes with extremely low glass transition temperature and excellent mechanical properties . Ind. Eng. Chem. Res. , 2016 , 55 ( 6 ), 1582 - 1589 . doi: 10.1021/acs.iecr.5b04921 http://dx.doi.org/10.1021/acs.iecr.5b04921
Liu W. ; Zhao Y. ; Wang R. ; Luo F. ; Li J. ; Li J. ; Tan H. Effect of chain extender on hydrogen bond and microphase structure of biodegradable thermoplastic polyurethanes . Chinese J. Polym. Sci. , 2018 , 36 ( 4 ), 514 - 520 . doi: 10.1007/s10118-018-2020-3 http://dx.doi.org/10.1007/s10118-018-2020-3
Hu S. ; Shou T. ; Zhao X. ; Wang Z. ; Zhang S. ; Qin X. ; Guo M. ; Zhang L. Rational design of a novel NDI-based thermoplastic polyurethane elastomer with superior heat resistance . Polymer , 2020 , 205 , 122764 . doi: 10.1016/j.polymer.2020.122764 http://dx.doi.org/10.1016/j.polymer.2020.122764
Mattia J. ; Painter P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol) . Macromolecules , 2007 , 40 ( 5 ), 1546 - 1554 . doi: 10.1021/ma0626362 http://dx.doi.org/10.1021/ma0626362
Unverferth M. ; Kreye O. ; Prohammer A. ; Meier M. A. R. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols . Macromol. Rapid Commun. , 2013 , 34 ( 19 ), 1569 - 1574 . doi: 10.1002/marc.201300503 http://dx.doi.org/10.1002/marc.201300503
Steube M. ; Johann T. ; Barent R. D. ; Müller A. H. E. ; Frey H. Rational design of tapered multiblock copolymers for thermoplastic elastomers . Prog. Polym. Sci. , 2022 , 124 , 101488 . doi: 10.1016/j.progpolymsci.2021.101488 http://dx.doi.org/10.1016/j.progpolymsci.2021.101488
Charlon M. ; Heinrich B. ; Matter Y. ; Couzigné E. ; Donnio B. ; Avérous L. Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols . Eur. Polym. J. , 2014 , 61 , 197 - 205 . doi: 10.1016/j.eurpolymj.2014.10.012 http://dx.doi.org/10.1016/j.eurpolymj.2014.10.012
Ahn T. O. ; Choi I. S. ; Jeong H. M. ; Cho K. Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods . Polym. Int. , 1993 , 31 ( 4 ), 329 - 333 . doi: 10.1002/pi.4990310404 http://dx.doi.org/10.1002/pi.4990310404
Peebles J. Sequence length distribution in segmented block copolymers . Macromolecules , 1974 , 7 ( 6 ), 872 - 882 . doi: 10.1021/ma60042a034 http://dx.doi.org/10.1021/ma60042a034
Peebles , L. H. Jr . Hard block length distribution in segmented block copolymers . Macromolecules , 1976 , 9 ( 1 ), 58 - 61 . doi: 10.1021/ma60049a010 http://dx.doi.org/10.1021/ma60049a010
Hoeschele G. K. Segmented polyether ester copolymers: a new generation of high performance thermoplastic elastomers . Polym. Eng. Sci. , 1974 , 14 ( 12 ), 848 - 852 . doi: 10.1002/pen.760141207 http://dx.doi.org/10.1002/pen.760141207
Wilson R. ; Divakaran A. V. ; Kiran S. ; Varyambath A. ; Kumaran A. ; Sivaram S. ; Ragupathy L. Poly(glycerol sebacate)-based polyester-polyether copolymers and their semi-interpenetrated networks with thermoplastic poly(ester-ether) elastomers: preparation and properties . ACS Omega , 2018 , 3 ( 12 ), 18714 - 18723 . doi: 10.1021/acsomega.8b02451 http://dx.doi.org/10.1021/acsomega.8b02451
Gabriëlse W. ; Soliman M. ; Dijkstra K. Microstructure and phase behavior of block copoly(ether ester) thermoplastic elastomers . Macromolecules , 2001 , 34 ( 6 ), 1685 - 1693 . doi: 10.1021/ma0012696 http://dx.doi.org/10.1021/ma0012696
van der Schuur M. ; Gaymans R. J. Segmented block copolymers based on poly(propylene oxide) and monodisperse polyamide-6, T segments . J. Polym. Sci. A Polym. Chem. , 2006 , 44 ( 16 ), 4769 - 4781 . doi: 10.1002/pola.21587 http://dx.doi.org/10.1002/pola.21587
Gube A. ; Jakisch L. ; Häußler L. ; Schneider K. ; Voit B. ; Böhme F. Alternating block copolymers based on polyamide-12 and polycaprolactone . Polym. Int. , 2012 , 61 ( 2 ), 157 - 162 . doi: 10.1002/pi.3162 http://dx.doi.org/10.1002/pi.3162
Li X. ; Lai J. ; Wei J. ; Peng X. ; Wu J. ; Geng L. Structure and morphology of thermoplastic polyamide 6 elastomers with different soft segment content and their foaming behavior using supercritical CO 2 . Polym. Eng. Sci., 2022, 62 ( 1 ), 103 - 115 . doi: 10.1002/pen.25837 http://dx.doi.org/10.1002/pen.25837
Yilgor I. ; Yilgor E. Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders . Polym. Rev. , 2007 , 47 ( 4 ), 487 - 510 . doi: 10.1080/15583720701638260 http://dx.doi.org/10.1080/15583720701638260
Buckwalter D. J. ; Dennis J. M. ; Long T. E. Amide-containing segmented copolymers . Prog. Polym. Sci. , 2015 , 45 , 1 - 22 . doi: 10.1016/j.progpolymsci.2014.11.003 http://dx.doi.org/10.1016/j.progpolymsci.2014.11.003
van Hutten P. F. ; Walch E. ; Veeken A. H. M. ; Gaymans R. J. Segmented block copolymers based on polyamide-4,6 and poly(propylene oxide) . Polymer , 1990 , 31 ( 3 ), 524 - 529 . doi: 10.1016/0032-3861(90)90397-h http://dx.doi.org/10.1016/0032-3861(90)90397-h
Peyravi M. ; Babaluo A. A. ; Ardestani M. A. ; Aghjeh M. K. R. ; Pishghadam S. R. ; Hadi P. Study on the synthesis of poly(ether-block-amide) copolymer based on nylon6 and poly(ethylene oxide) with various block lengths . J. Appl. Polym. Sci. , 2010 , 118 ( 2 ), 1211 - 1218 . doi: 10.1002/app.32358 http://dx.doi.org/10.1002/app.32358
Lei Y. ; Li C. ; Fu X. ; Lei J. ; Zhou C. Synthesis and characterization of a high performance polyamide-6 elastomer based on poly(ether- block -amide) multiblock copolymer by reactive processing in torque rheometer . Adv. Polym. Technol. , 2018 , 37 ( 6 ), 1782 - 1789 . doi: 10.1002/adv.21837 http://dx.doi.org/10.1002/adv.21837
Gaymans R. J. ; van Swaaij A. W. Enhancing the drawability of a polyester by copolymerization with a second type of crystallizable block . J. Appl. Polym. Sci. , 2011 , 119 ( 1 ), 23 - 30 . doi: 10.1002/app.31228 http://dx.doi.org/10.1002/app.31228
Fetters L. J. ; Morton M. Synthesis and properties of block polymers . I. Poly-α-methylstyrene-polyisoprene-poly-α-methylstyrene. Macromolecules , 1969 , 2 ( 5 ), 453 - 458 . doi: 10.1021/ma60011a002 http://dx.doi.org/10.1021/ma60011a002
Bolton J. M. ; Hillmyer M. A. ; Hoye T. R. Sustainable thermoplastic elastomers from terpene-derived monomers . ACS Macro Lett. , 2014 , 3 ( 8 ), 717 - 720 . doi: 10.1021/mz500339h http://dx.doi.org/10.1021/mz500339h
Hutchings L. R. ; Brooks P. P. ; Shaw P. ; Ross-Gardner P. Fire and forget! one-shot synthesis and characterization of block-like statistical terpolymers via living anionic polymerization . J. Polym. Sci. Part A Polym. Chem. , 2019 , 57 ( 3 ), 382 - 394 . doi: 10.1002/pola.29208 http://dx.doi.org/10.1002/pola.29208
Guo F. ; Jiang L. ; Diao K. ; Hou Z. Stereoselective copolymerization of 4 -(N,N-diphenylamino)styrene and isoprene by a C 5 H 5 -ligated scandium catalyst: synthesis of amino-functionalized crystalline styrenic thermoplastic elastomers . Polym. Chem., 2020, 11 ( 7 ), 1314 - 1320 .
Yu J. M. ; Dubois P. ; Jérôme R. Poly [poly(isobornyl methacrylate-co-methyl methacrylate) (poly(IBMA-co-MMA))-b-polybutadiene-b-poly(IBMA-co-MMA) ] copolymers: synthesis, morphology and properties. Macromolecules , 1997 , 30 ( 21 ), 6536 - 6543 . doi: 10.1021/ma961849w http://dx.doi.org/10.1021/ma961849w
Li Z. ; Chen J. ; Su L. ; Zou B. ; Zhan P. ; Guan Y. ; Zheng A. A controlled synthesis method of polystyrene- b -polyisoprene- b -poly(methyl methacrylate) copolymer via anionic polymerization with trace amounts of THF having potential of a commercial scale . RSC Adv. , 2017 , 7 ( 16 ), 9933 - 9940 . doi: 10.1039/c6ra25155b http://dx.doi.org/10.1039/c6ra25155b
Wang W. ; Schlegel R. ; White B. T. ; Williams K. ; Voyloy D. ; Steren C. A. ; Goodwin A. ; Coughlin E. B. ; Gido S. ; Beiner M. ; Hong K. ; Kang N. G. ; Mays J. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature . Macromolecules , 2016 , 49 ( 7 ), 2646 - 2655 . doi: 10.1021/acs.macromol.5b02642 http://dx.doi.org/10.1021/acs.macromol.5b02642
Wei R. ; Luo Y. ; Zeng W. ; Wang F. ; Xu S. Styrene-butadiene-styrene triblock copolymer latex via reversible addition-fragmentation chain transfer miniemulsion polymerization . Ind. Eng. Chem. Res. , 2012 , 51 ( 47 ), 15530 - 15535 . doi: 10.1021/ie302067n http://dx.doi.org/10.1021/ie302067n
Xia C. ; Luo Y. Modification of bitumen emulsion via heterocoagulation with SIS triblock copolymer latex . J. Appl. Polym. Sci. , 2017 , 134 ( 48 ), 45510 . doi: 10.1002/app.45510 http://dx.doi.org/10.1002/app.45510
Guo Y. ; Zhang J. ; Xie P. ; Gao X. ; Luo Y. Tailor-made compositional gradient copolymer by a many-shot RAFT emulsion polymerization method . Polym. Chem. , 2014 , 5 ( 10 ), 3363 - 3371 . doi: 10.1039/c4py00003j http://dx.doi.org/10.1039/c4py00003j
Fang J. ; Wang S. ; Luo Y. One-pot synthesis of octablock copolymers of high-molecular weight via RAFT emulsion polymerization . AlChE J. , 2020 , 66 ( 1 ), e 16781 . doi: 10.1002/aic.16781 http://dx.doi.org/10.1002/aic.16781
Huang J. ; Luo Y. ; Gao X. Morphology and mechanical properties of Acrylonitrile-styrene-acrylate toughened plastics with block copolymer chain structure . Polym. Eng. Sci. , 2019 , 59 ( 2 ), 389 - 395 . doi: 10.1002/pen.24935 http://dx.doi.org/10.1002/pen.24935
Malanga M. Syndiotactic polystyrene materials . Adv. Mater. , 2000 , 12 ( 23 ), 1869 - 1872 . doi: 10.1002/1521-4095(200012)12:23<1869::aid-adma1869>3.0.co;2-# http://dx.doi.org/10.1002/1521-4095(200012)12:23<1869::aid-adma1869>3.0.co;2-#
Ban H. T. ; Kase T. ; Kawabe M. ; Miyazawa A. ; Ishihara T. ; Hagihara H. ; Tsunogae Y. ; Murata M. ; Shiono T. A new approach to styrenic thermoplastic elastomers: synthesis and characterization of crystalline styrene-butadiene-styrene triblock copolymers . Macromolecules , 2006 , 39 ( 1 ), 171 - 176 . doi: 10.1021/ma051576h http://dx.doi.org/10.1021/ma051576h
Zhang H. ; Luo Y. ; Hou Z. Scandium-catalyzed syndiospecific copolymerization of styrene with isoprene . Macromolecules , 2008 , 41 ( 4 ), 1064 - 1066 . doi: 10.1021/ma7027006 http://dx.doi.org/10.1021/ma7027006
Lin F. ; Wu C. ; Cui D. Synthesis and characterization of crystalline styrene- b -(ethylene- co -butylene)- b -styrene triblock copolymers . J. Polym. Sci. Part A Polym. Chem. , 2017 , 55 ( 7 ), 1243 - 1249 . doi: 10.1002/pola.28489 http://dx.doi.org/10.1002/pola.28489
Sun M. ; Xiao Y. ; Liu K. ; Yang X. ; Liu P. ; Jie S. ; Hu J. ; Shi S. ; Wang Q. ; Lim K. H. ; Liu Z. ; Li B. G. ; Wang W. J. Synthesis and characterization of polyolefin thermoplastic elastomers: a review . Can. J. Chem. Eng. , 2023 , 101 ( 9 ), 4886 - 4906 . doi: 10.1002/cjce.24825 http://dx.doi.org/10.1002/cjce.24825
Zhang K. ; Liu P. ; Wang W. J. ; Li B. G. ; Liu W. ; Zhu S. Preparation of comb-shaped polyolefin elastomers having ethylene/1-octene copolymer backbone and long chain polyethylene branches via a tandem metallocene catalyst system . Macromolecules , 2018 , 51 ( 21 ), 8790 - 8799 . doi: 10.1021/acs.macromol.8b01711 http://dx.doi.org/10.1021/acs.macromol.8b01711
Hotta A. ; Cochran E. ; Ruokolainen J. ; Khanna V. ; Fredrickson G. H. ; Kramer E. J. ; Shin Y. W. ; Shimizu F. ; Cherian A. E. ; Hustad P. D. ; Rose J. M. ; Coates G. W. Semicrystalline thermoplastic elastomeric polyolefins: advances through catalyst development and macromolecular design . Proc. Natl. Acad. Sci. , 2006 , 103 ( 42 ), 15327 - 15332 . doi: 10.1073/pnas.0602894103 http://dx.doi.org/10.1073/pnas.0602894103
Duan N. ; Sun Z. ; Ren Y. ; Liu Z. ; Liu L. ; Yan F. Imidazolium-based ionic polyurethanes with high toughness, tunable healing efficiency and antibacterial activities . Polym. Chem. , 2020 , 11 ( 4 ), 867 - 875 . doi: 10.1039/c9py01620a http://dx.doi.org/10.1039/c9py01620a
Yuan Z. ; Yan J. ; Gao F. ; Cheng J. ; Zhang J. High-performance, fluorescent, UV-shielding, triboelectric, super-flexible polyurea elastomers via strong π - π stacking of pyrene and hydrogen bonding strategies . J. Mater. Chem. C , 2023 , 11 ( 26 ), 8971 - 8981 . doi: 10.1039/d3tc00963g http://dx.doi.org/10.1039/d3tc00963g
Jin C. ; Sinawang G. ; Osaki M. ; Zheng Y. ; Yamaguchi H. ; Harada A. ; Takashima Y. Self-healing thermoplastic polyurethane linked via host-guest interactions . Polymers , 2020 , 12 ( 6 ), 1393 . doi: 10.3390/polym12061393 http://dx.doi.org/10.3390/polym12061393
Chen L. ; Xu J. ; Zhu M. ; Zeng Z. ; Song Y. ; Zhang Y. ; Zhang X. ; Deng Y. ; Xiong R. ; Huang C. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications . Mater. Horiz. , 2023 , 10 ( 10 ), 4000 - 4032 . doi: 10.1039/d3mh00236e http://dx.doi.org/10.1039/d3mh00236e
Ren Y. ; Dong X. Dynamic polymeric materials via hydrogen-bond cross-linking: effect of multiple network topologies . Prog. Polym. Sci. , 2024 , 158 , 101890 . doi: 10.1016/j.progpolymsci.2024.101890 http://dx.doi.org/10.1016/j.progpolymsci.2024.101890
Hayashi M. ; Noro A. ; Matsushita Y. Highly extensible supramolecular elastomers with large stress generation capability originating from multiple hydrogen bonds on the long soft network strands . Macromol. Rapid Commun. , 2016 , 37 ( 8 ), 678 - 684 . doi: 10.1002/marc.201500663 http://dx.doi.org/10.1002/marc.201500663
Song X. ; Cao L. ; Tanaka R. ; Shiono T. ; Cai Z. Optically transparent functional polyolefin elastomer with excellent mechanical and thermal properties . ACS Macro Lett. , 2019 , 8 ( 3 ), 299 - 303 . doi: 10.1021/acsmacrolett.9b00005 http://dx.doi.org/10.1021/acsmacrolett.9b00005
Li Z. ; Zhu Y. L. ; Niu W. ; Yang X. ; Jiang Z. ; Lu Z. Y. ; Liu X. ; Sun J. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability . Adv. Mater. , 2021 , 33 ( 27 ), e 2101498 . doi: 10.1002/adma.202101498 http://dx.doi.org/10.1002/adma.202101498
Bai J. ; Li H. ; Shi Z. ; Tian M. ; Yin J. Dynamic crosslinked poly(styrene- block -butadiene- block -styrene) via Diels-Alder chemistry: an ideal method to improve solvent resistance and mechanical properties without losing its thermal plastic behavior . RSC Adv. , 2015 , 5 ( 56 ), 45376 - 45383 . doi: 10.1039/c5ra08719h http://dx.doi.org/10.1039/c5ra08719h
Zhu L. ; Xu L. ; Jie S. ; Li B. G. Upgrade SBS into vitrimers with excellent mechanical and physical properties . Eur. Polym. J. , 2022 , 180 , 111600 . doi: 10.1016/j.eurpolymj.2022.111600 http://dx.doi.org/10.1016/j.eurpolymj.2022.111600
Zhao Y. ; Li J. ; Ma Y. ; Wang Y. ; Jiang C. ; Yan H. ; Hao R. ; Qin J. ; Shi X. ; Zhang G. One-step reactive processing of vitrimeric thermoplastic polyolefin elastomer with greatly improved thermo-mechanical property . Polymer , 2023 , 282 , 126185 . doi: 10.1016/j.polymer.2023.126185 http://dx.doi.org/10.1016/j.polymer.2023.126185
Xiao Y. ; Liu P. ; Wang W. J. ; Li B. G. Dynamically cross-linked polyolefin elastomers with highly improved mechanical and thermal performance . Macromolecules , 2021 , 54 ( 22 ), 10381 - 10387 . doi: 10.1021/acs.macromol.1c01249 http://dx.doi.org/10.1021/acs.macromol.1c01249
Xiao Y. ; Wang W. J. ; Li B. G. ; Liu P. High-performance olefin thermoplastic elastomer based on dynamically cross-linking crystalline macromers and elastic backbones . Macromolecules , 2024 , 57 ( 4 ), 1788 - 1794 . doi: 10.1021/acs.macromol.3c02372 http://dx.doi.org/10.1021/acs.macromol.3c02372
Lai J. ; Jia X. ; Wang D. ; Deng Y. ; Zheng P. ; Li C. ; Zuo J. ; Bao Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers . Nat. Commun. , 2019 , 10 ( 1 ), 1164 . doi: 10.1038/s41467-019-09130-z http://dx.doi.org/10.1038/s41467-019-09130-z
Wang Q. ; He Y. ; Li Q. ; Wu C. SBS thermoplastic elastomer based on dynamic metal-ligand bond: structure, mechanical properties, and shape memory behavior . Macromol. Mater. Eng. , 2021 , 306 ( 5 ), 2000737 . doi: 10.1002/mame.202000737 http://dx.doi.org/10.1002/mame.202000737
Li Z. ; Wang J. ; Li X. ; Wang Y. ; Fan L. ; Yang S. ; Guo M. ; Li X. ; Tu Y. Supramolecular and physically double-cross-linked network strategy toward strong and tough elastic fibers . ACS Macro Lett. , 2020 , 9 ( 11 ), 1655 - 1661 . doi: 10.1021/acsmacrolett.0c00579 http://dx.doi.org/10.1021/acsmacrolett.0c00579
Wang X. ; Zhan S. ; Lu Z. ; Li J. ; Yang X. ; Qiao Y. ; Men Y. ; Sun J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance . Adv. Mater. , 2020 , 32 ( 50 ), e 2005759 . doi: 10.1002/adma.202005759 http://dx.doi.org/10.1002/adma.202005759
Zhou Q. ; Jie S. ; Li B. G. Facile synthesis of novel HTPBs and EHTPBs with high cis -1,4 content and extremely low glass transition temperature . Polymer , 2015 , 67 , 208 - 215 . doi: 10.1016/j.polymer.2015.04.078 http://dx.doi.org/10.1016/j.polymer.2015.04.078
Xu L. ; Jie S. ; Bu Z. ; Li B. G. Preparation of primary amine-terminated polybutadiene from cis-polybutadiene . Eur. Polym. J. , 2021 , 152 , 110484 . doi: 10.1016/j.eurpolymj.2021.110484 http://dx.doi.org/10.1016/j.eurpolymj.2021.110484
Zhu L. ; Zhu L. ; Hu J. ; Yao Z. ; Bu Z. ; Jie S. ; Li B. G. Controllable preparation of high-performance amine-terminated polybutadiene-based polyurea: structure and properties . Ind. Eng. Chem. Res. , 2025 , 64 ( 1 ), 490 - 501 . doi: 10.1021/acs.iecr.4c03629 http://dx.doi.org/10.1021/acs.iecr.4c03629
张聪聪 ; 郑梦凯 ; 李伯耿 . 软段结构对聚氨酯弹性体性能的影响 . 化工学报 , 2019 , 70 ( 10 ), 4043 - 4051 .
Zhu H. ; Wu Y. ; Zhao J. ; Guo Q. ; Huang Q. ; Wu G. Styrene-butadiene block copolymer with high cis-1 , 4 microstructure . J. Appl. Polym. Sci., 2007, 106 ( 1 ), 103 - 109 . doi: 10.1002/app.26528 http://dx.doi.org/10.1002/app.26528
朱寒 , 左夏龙 , 张树 , 马晓丽 , 刘雁飞 , 吴一弦 . 稀土催化剂及其用于合成橡胶/弹性体的研究进展 . 高分子通报 , 2014 , ( 5 ), 65 - 87 .
Chung Y. C. ; Duy Khiem N. ; Chun B. C. Effects of the structures of end groups of pendant polydimethylsiloxane attached to a polyurethane copolymer on the low temperature toughness . Polym. Eng. Sci. , 2015 , 55 ( 8 ), 1931 - 1940 . doi: 10.1002/pen.24034 http://dx.doi.org/10.1002/pen.24034
Hu S. ; Chen X. ; Torkelson J. M. Isocyanate-free, thermoplastic polyhydroxyurethane elastomers designed for cold temperatures: influence of PDMS soft-segment chain length and hard-segment content . Polymer , 2022 , 256 , 125251 . doi: 10.1016/j.polymer.2022.125251 http://dx.doi.org/10.1016/j.polymer.2022.125251
Kang E. ; Kaneko T. ; Shiino D. ; Akashi M. Novel functional polymers: poly(dimethyl siloxane)-polyamide multiblock copolymers. XI. The effects of sequence regularity on the thermal and mechanical properties . J. Polym. Sci. A Polym. Chem. , 2003 , 41 ( 6 ), 841 - 852 . doi: 10.1002/pola.10640 http://dx.doi.org/10.1002/pola.10640
Tsiang R. C. ; Yang W. ; Tsai M. Hydrogenation of polystyrene- b -polybutadiene- b -polystyrene block copolymers using a metallocene/n-butyllithium catalyst-the role of n-butyllithium . Polymer , 1999 , 40 ( 23 ), 6351 - 6360 . doi: 10.1016/s0032-3861(98)00840-4 http://dx.doi.org/10.1016/s0032-3861(98)00840-4
Xicohtencatl-Serrano H. ; García-Leiner M. ; Cabrera-Ortiz A. ; Herrera-Nájera R. Synthesis and characterization of poly(styrene- b -(butadiene)1- x -(ethylene-co-butylene)x)- b -styrene) star-like molecular polymers produced by partial hydrogenation of SBS . Polym. Eng. Sci. , 2014 , 54 ( 10 ), 2332 - 2344 . doi: 10.1002/pen.23796 http://dx.doi.org/10.1002/pen.23796
Ashraf A. R. ; Ryan J. J. ; Satkowski M. M. ; Smith S. D. ; Spontak R. J. Effect of systematic hydrogenation on the phase behavior and nanostructural dimensions of block copolymers . ACS Appl. Mater. Interfaces , 2018 , 10 ( 4 ), 3186 - 3190 . doi: 10.1021/acsami.7b19433 http://dx.doi.org/10.1021/acsami.7b19433
Hucul D. A. ; Hahn S. F. Catalytic hydrogenation of polystyrene . Adv. Mater. , 2000 , 12 ( 23 ), 1855 - 1858 . doi: 10.1002/1521-4095(200012)12:23<1855::aid-adma1855>3.0.co;2-p http://dx.doi.org/10.1002/1521-4095(200012)12:23<1855::aid-adma1855>3.0.co;2-p
Alfonzo C. G. ; Fleury G. ; Chaffin K. A. ; Bates F. S. Synthesis and characterization of elastomeric heptablock terpolymers structured by crystallization . Macromolecules , 2010 , 43 ( 12 ), 5295 - 5305 . doi: 10.1021/ma100347k http://dx.doi.org/10.1021/ma100347k
Tadge T. ; Garje S. ; Saxena V. ; Raichur A. M. Application of shape memory and self-healable polymers/composites in the biomedical field: a review . ACS Omega , 2023 , 8 ( 36 ), 32294 - 32310 . doi: 10.1021/acsomega.3c04569 http://dx.doi.org/10.1021/acsomega.3c04569
Dayyoub T. ; Maksimkin A. V. ; Filippova O. V. ; Tcherdyntsev V. V. ; Telyshev D. V. Shape memory polymers as smart materials: a review . Polymers , 2022 , 14 ( 17 ), 3511 . doi: 10.3390/polym14173511 http://dx.doi.org/10.3390/polym14173511
Cheng Z. ; Zhang D. ; Luo X. ; Lai H. ; Liu Y. ; Jiang L. Superwetting shape memory microstructure: smart wetting control and practical application . Adv. Mater. , 2021 , 33 ( 6 ), e 2001718 . doi: 10.1002/adma.202001718 http://dx.doi.org/10.1002/adma.202001718
Suchao-in K. ; Chirachanchai S. "Grafting to" as a novel and simple approach for triple-shape memory polymers . ACS Appl. Mater. Interfaces , 2013 , 5 ( 15 ), 6850 - 6853 . doi: 10.1021/am402214j http://dx.doi.org/10.1021/am402214j
肖扬可 . 基于硼酸酯动态化学交联的高性能热塑性聚烯烃弹性体制备 . 浙江大学博士学位论文 . 2024 .
Wu D. Y. ; Meure S. ; Solomon D. Self-healing polymeric materials: a review of recent developments . Prog. Polym. Sci. , 2008 , 33 ( 5 ), 479 - 522 . doi: 10.1016/j.progpolymsci.2008.02.001 http://dx.doi.org/10.1016/j.progpolymsci.2008.02.001
Li B. ; Cao P. F. ; Saito T. ; Sokolov A. P. Intrinsically self-healing polymers: from mechanistic insight to current challenges . Chem. Rev. , 2023 , 123 ( 2 ), 701 - 735 . doi: 10.1021/acs.chemrev.2c00575 http://dx.doi.org/10.1021/acs.chemrev.2c00575
Yao Y. ; Xu Z. ; Liu B. ; Xiao M. ; Yang J. ; Liu W. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence . Adv. Funct. Mater. , 2021 , 31 ( 4 ), 2006944 . doi: 10.1002/adfm.202006944 http://dx.doi.org/10.1002/adfm.202006944
Li M. ; Zhang R. ; Li X. ; Wu Q. ; Chen T. ; Sun P. High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: the molecular design, microstructures, and macroscopic properties . Polymer , 2018 , 148 , 127 - 137 . doi: 10.1016/j.polymer.2018.06.024 http://dx.doi.org/10.1016/j.polymer.2018.06.024
Wu L. ; Pei F. ; Cheng D. ; Zhang Y. ; Cheng H. ; Huang K. ; Yuan L. ; Li Z. ; Xu H. ; Huang Y. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries . Adv. Funct. Mater. , 2024 , 34 ( 16 ), 2310084 . doi: 10.1002/adfm.202310084 http://dx.doi.org/10.1002/adfm.202310084
Shi Z. ; Kang J. ; Zhang L. Water-enabled room-temperature self-healing and recyclable polyurea materials with super-strong strength, toughness, and large stretchability . ACS Appl. Mater. Interfaces , 2020 , 12 ( 20 ), 23484 - 23493 . doi: 10.1021/acsami.0c04414 http://dx.doi.org/10.1021/acsami.0c04414
Huang Y. ; Shi Z. ; Wang H. ; Wang J. ; Xue Z. Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis . Energy Storage Mater. , 2022 , 51 , 1 - 10 . doi: 10.1016/j.ensm.2022.06.021 http://dx.doi.org/10.1016/j.ensm.2022.06.021
Ur Rehman H. ; Chen Y. ; Hedenqvist M. S. ; Li H. ; Xue W. ; Guo Y. ; Guo Y. ; Duan H. ; Liu H. Self-healing shape memory PUPCL copolymer with high cycle life . Adv. Funct. Mater. , 2018 , 28 ( 7 ), 1704109 . doi: 10.1002/adfm.201704109 http://dx.doi.org/10.1002/adfm.201704109
Xu Y. ; Chen D. Shape memory-assisted self-healing polyurethane inspired by a suture technique . J. Mater. Sci. , 2018 , 53 ( 14 ), 10582 - 10592 . doi: 10.1007/s10853-018-2346-9 http://dx.doi.org/10.1007/s10853-018-2346-9
Pelrine R. ; Kornbluh R. ; Pei Q. ; Joseph J. High-speed electrically actuated elastomers with strain greater than 100% . Science , 2000 , 287 ( 5454 ), 836 - 839 . doi: 10.1126/science.287.5454.836 http://dx.doi.org/10.1126/science.287.5454.836
Shian S. ; Bertoldi K. ; Clarke D. R. Dielectric elastomer based "grippers" for soft robotics . Adv. Mater. , 2015 , 27 ( 43 ), 6814 - 6819 . doi: 10.1002/adma.201503078 http://dx.doi.org/10.1002/adma.201503078
Stoyanov H. ; Kollosche M. ; McCarthy D. N. ; Kofod G. Molecular composites with enhanced energy density for electroactive polymers . J. Mater. Chem. , 2010 , 20 ( 35 ), 7558 - 7564 . doi: 10.1039/c0jm00519c http://dx.doi.org/10.1039/c0jm00519c
Ma Z. ; Xie Y. ; Mao J. ; Yang X. ; Li T. ; Luo Y. Thermoplastic dielectric elastomer of triblock copolymer with high electromechanical performance . Macromol. Rapid Commun. , 2017 , 38 ( 16 ). 1700268 . doi: 10.1002/marc.201700268 http://dx.doi.org/10.1002/marc.201700268
Xiao Y. ; Chen Z. ; Mao J. ; Cao X. ; He J. ; Yang T. ; Chen L. ; Yang. , X .; Zhao, J.; Li, T.; Luo, Y. Self-strengthening dielectric elastomer of triblock copolymer with significantly improved electromechanical performance under low voltage . Macromol. Mater. Eng. , 2021 , 306 ( 5 ), 2000732 . doi: 10.1002/mame.202000732 http://dx.doi.org/10.1002/mame.202000732
Shi Y. ; Askounis E. ; Plamthottam R. ; Libby T. ; Peng Z. ; Youssef K. ; Pu J. ; Pelrine R. ; Pei Q. A processable, high-performance dielectric elastomer and multilayering process . Science , 2022 , 377 ( 6602 ), 228 - 232 . doi: 10.1126/science.abn0099 http://dx.doi.org/10.1126/science.abn0099
Thomas S. A. ; Cherusseri J. ; Rajendran D. N. A minireview on polyurethane-based flexible electrodes for wearable supercapacitors: strategies, syntheses and electrochemical performance evaluations . Energy Fuels , 2025 , 39 ( 1 ), 2 - 18 . doi: 10.1021/acs.energyfuels.4c03291 http://dx.doi.org/10.1021/acs.energyfuels.4c03291
Cui P. ; Li Y. ; Liu Y. ; Wang S. ; Tang X. ; Ye Y. ; Su H. ; Sun C. Polyether-based polyurethane electrolyte for lithium metal battery: a perspective . RSC Adv. , 2024 , 14 ( 49 ), 36152 - 36160 . doi: 10.1039/d4ra06863g http://dx.doi.org/10.1039/d4ra06863g
Madden J. D. W. ; Vandesteeg N. A. ; Anquetil P. A. ; Madden P. G. A. ; Takshi A. ; Pytel R. Z. ; Lafontaine S. R. ; Wieringa P. A. ; Hunter I. W. Artificial muscle technology: physical principles and naval prospects . IEEE J. Ocean. Eng. , 2004 , 29 ( 3 ), 706 - 728 . doi: 10.1109/joe.2004.833135 http://dx.doi.org/10.1109/joe.2004.833135
Ji X. ; Liu X. ; Cacucciolo V. ; Imboden M. ; Civet Y. ; El Haitami A. ; Cantin S. ; Perriard Y. ; Shea H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators . Sci. Robot. , 2019 , 4 ( 37 ), eaaz 6451 . doi: 10.1126/scirobotics.aaz6451 http://dx.doi.org/10.1126/scirobotics.aaz6451
Li G. ; Chen X. ; Zhou F. ; Liang Y. ; Xiao Y. ; Cao X. ; Zhang Z. ; Zhang M. ; Wu B. ; Yin S. ; Xu Y. ; Fan H. ; Chen Z. ; Song W. ; Yang W. ; Pan B. ; Hou J. ; Zou W. ; He S. ; Yang X. ; Mao G. ; Jia Z. ; Zhou H. ; Li T. ; Qu S. ; Xu Z. ; Huang Z. ; Luo Y. ; Xie T. ; Gu J. ; Zhu S. ; Yang W. Self-powered soft robot in the Mariana trench . Nature , 2021 , 591 ( 7848 ), 66 - 71 . doi: 10.1038/s41586-020-03153-z http://dx.doi.org/10.1038/s41586-020-03153-z
Xie H. ; Wu L. ; Li B. G. ; Dubois P. Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: from high tough thermoplastics to elastomers . Polymer , 2018 , 155 , 89 - 98 . doi: 10.1016/j.polymer.2018.09.033 http://dx.doi.org/10.1016/j.polymer.2018.09.033
Zhang Q. ; Song M. ; Xu Y. ; Wang W. ; Wang Z. ; Zhang L. Bio-based polyesters: recent progress and future prospects . Prog. Polym. Sci. , 2021 , 120 , 101430 . doi: 10.1016/j.progpolymsci.2021.101430 http://dx.doi.org/10.1016/j.progpolymsci.2021.101430
Chi D. ; Liu F. ; Na H. ; Chen J. ; Hao C. ; Zhu J. Poly(neopentyl glycol 2,5-furandicarboxylate): a promising hard segment for the development of bio-based thermoplastic poly(ether-ester) elastomer with high performance . ACS Sustainable Chem. Eng. , 2018 , 6 ( 8 ), 9893 - 9902 . doi: 10.1021/acssuschemeng.8b01105 http://dx.doi.org/10.1021/acssuschemeng.8b01105
Zhao P. ; Zhang J. ; Lou Y. ; Li J. ; Han G. ; Zeng S. ; Wang Y. ; Liu Y. ; Yu H. Ultratough polyurethane elastomers for artificial ligaments . ACS Mater. Lett. , 2024 , 6 ( 8 ), 3226 - 3237 . doi: 10.1021/acsmaterialslett.4c00505 http://dx.doi.org/10.1021/acsmaterialslett.4c00505
Chang Y. ; Xiao Y. ; Sun M. ; Gao W. ; Zhu L. ; Wang Q. ; Wang W. J. ; Li B. G. ; Liu P. Oxidative upcycling of polyolefin wastes into the dynamically cross-linked elastomer . Macromolecules , 2024 , 57 ( 21 ), 9943 - 9949 . doi: 10.1021/acs.macromol.4c01869 http://dx.doi.org/10.1021/acs.macromol.4c01869
0
Views
91
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution