浏览全部资源
扫码关注微信
合成与生物胶体教育部重点实验室 江南大学化学与材料工程学院 无锡 214122
E-mail: mqchen@jiangnan.edu.cn
纸质出版日期:2022-08-20,
网络出版日期:2022-06-12,
收稿日期:2022-02-13,
录用日期:2022-03-17
移动端阅览
肖鑫,张菱素,施冬健等.近红外响应性可复写光子凝胶的构筑与性能调控[J].高分子学报,2022,53(08):933-941.
Xiao Xin,Zhang Ling-su,Shi Dong-jian,et al.Fabrication of Near-infrared Responsive Rewritable Photonic Hydrogel and Property Control[J].ACTA POLYMERICA SINICA,2022,53(08):933-941.
肖鑫,张菱素,施冬健等.近红外响应性可复写光子凝胶的构筑与性能调控[J].高分子学报,2022,53(08):933-941. DOI: 10.11777/j.issn1000-3304.2022.22038.
Xiao Xin,Zhang Ling-su,Shi Dong-jian,et al.Fabrication of Near-infrared Responsive Rewritable Photonic Hydrogel and Property Control[J].ACTA POLYMERICA SINICA,2022,53(08):933-941. DOI: 10.11777/j.issn1000-3304.2022.22038.
设计合成了一种以聚苯乙烯光子晶体为模板的聚(
N
-异丙基丙烯酰胺-甲基丙烯酸羟乙酯)光子凝胶,引入不同长径比的金纳米棒赋予凝胶近红外致变色能力. 响应时间及变色性能随凝胶中甲基丙烯酸羟乙酯的含量变化,其含量为30%时凝胶结构色变化达到峰值(34 nm). 通过改变聚苯乙烯微球直径可以调控光子凝胶变色范围,颜色变化可覆盖从红色到蓝色. 以聚对苯二甲酸乙二醇酯包覆可制得近红外响应性器件,在近红外光照射下区域会发生颜色变化,循环稳定性良好,有望应用于显示器、近红外检测器和彩色复写纸等领域.
Photonic crystals (PCs) are a kind of optical material composed of periodic arranged refractive medias. Different with traditional chemical pigments
PCs' structural colors a
re produced by the physical interaction between refraction media and light
which makes PCs bleach resistant. Thus PCs show a great potential application in the field of rewritable paper
but the lack of light induced-color change ability limited its application. We design a Near-infrared (NIR) response photonic crystals hydrogel based on poly(
N
-isopropyl acrylamide-
co
-2-hydroxyethyl methacrylate) and gold nanorods. The incorporated gold nanorods endow hydrogel with NUR induced color change. The swelling of the polymer chain expands the spacing distance between polystyrene microspheres in the photonic crystal
resulting in the red-shift of structural color change and providing the possibility for NIR response. After NIR irradiation
the temperature of photonic hydrogel would increase due to the LSPR effect of Au NRs. Then
the NIPAm segment shrinks and reduces the spacing between polystyrene microspheres
resulting in the blue shift of structural color. The NIPAm chains would swell once NIR removed
leading to photonic hydrogel's structural color restore. The response time and displaying performance could be regulated by changing the content of hydroxyethyl methacrylate. A significant color change (34 nm) appeared in the 30% content of hydroxyethyl methacrylate
resulting the hydrogel could cover a range from red to blue by changing the diameter of the polystyrene templates. The photonic hydrogel could fabricate NIR responsive devices
via
polyethene terephthalate encapsulate. The color of the irradiated area would change under the NIR light irradiation. Moreover
the device shows excellent reversibility in the loop test. This strategy would pave a new route for smart displays
NIR detectors
and rewritable paper applications.
金纳米棒复合光子水凝胶复写纸近红外响应
Gold nanorodsHybrid photonic hydrogelRewritable paperNear-infrared responsiveness
Wen X, Lu X, Wei C, Li J, Li Y, Yang S. ACS Appl Nano Mater, 2021, 4(9): 9855-9865. doi:10.1021/acsanm.1c02283http://dx.doi.org/10.1021/acsanm.1c02283
Wang Y, Wang Y, Ma C, Li Y, Zhao C, Ye W, Wen Z, Yuan X, Cao Y. J Mater Chem C, 2021, 9(46): 16626-16633. doi:10.1039/d1tc04118ehttp://dx.doi.org/10.1039/d1tc04118e
Meurer J, Bätz T, Hniopek J, Zechel S, Schmitt M, Popp J, Hager M D, Schubert U S. J Mater Chem A, 2021, 9(26): 15051-15058. doi:10.1039/d1ta03064ghttp://dx.doi.org/10.1039/d1ta03064g
Khazi M I, Jeong W, Kim J. Adv Mater, 2018, 30(15): 1705310. doi:10.1002/adma.201705310http://dx.doi.org/10.1002/adma.201705310
Du X, Li T, Li L, Zhang Z, Wu T. J Mater Chem C, 2015, 3(15): 3542-3546. doi:10.1039/c5tc00217fhttp://dx.doi.org/10.1039/c5tc00217f
Koutinas A A, Vlysidis A, Pleissner D, Kopsahelis N, Lopez G I, Kookos I K, Papanikolaou S, Kwan T H, Lin C S K. Chem Soc Rev, 2014, 43: 2587-2627. doi:10.1039/c3cs60293ahttp://dx.doi.org/10.1039/c3cs60293a
Liu J, Wang Y, Wang J, Zhou G, Ikeda T, Jiang L. ACS Appl Mater Interfaces, 2021, 13(10): 12383-12392. doi:10.1021/acsami.0c22668http://dx.doi.org/10.1021/acsami.0c22668
Hou J, Li M, Song Y. Angew Chem Int Ed, 2018, 57(10): 2544-2553. doi:10.1002/anie.201704752http://dx.doi.org/10.1002/anie.201704752
Guo M, Yu X, Zhao J, Wang J, Qing R, Liu J, W X, Zhu L, Chen S. Sens Actuators B Chem, 2021, 347: 130639. doi:10.1016/j.snb.2021.130639http://dx.doi.org/10.1016/j.snb.2021.130639
Meng Jiayi(孟佳意), Li Xin(李昕), Gong Yan(龚龑), Wang Rui(王锐), Zheng Yiping(郑一平), Zhang Dequan(张德权). Acta Polymerica Sinica(高分子学报), 2018, (3): 389-394. doi:10.11777/j.issn1000-3304.2017.17113http://dx.doi.org/10.11777/j.issn1000-3304.2017.17113
Eoh H, Jung Y, Park C, Lee C E, Park T H, Kang H S, Jeon S, Ryu D Y, Huh J, Park C. Adv Funct Mater, 2022, 32(1): 2103697. doi:10.1002/adfm.202103697http://dx.doi.org/10.1002/adfm.202103697
Li S, Zeng Y, Hou W, Wan W, Zhang J, Wang Y, Du X, Gu Z. Mater Horizons, 2020, 7(11): 2944. doi:10.1039/d0mh01019ghttp://dx.doi.org/10.1039/d0mh01019g
Chen J, Xu L, Yang M, Chen X, Chen X, Hong W. Chem Mater, 2019, 31(21): 8918-8926. doi:10.1021/acs.chemmater.9b02961http://dx.doi.org/10.1021/acs.chemmater.9b02961
Yang Z, Shi D, Chen M, Liu S. Analytical Methods, 2015, 7(19): 8352-8359. doi:10.1039/c5ay01839khttp://dx.doi.org/10.1039/c5ay01839k
Qin Xiatong(秦夏彤), Liu Genqi(刘根起), Liu Chenhui(刘晨辉) Liu Jianxun(刘建勋), Li Huanhuan(李欢欢), Cao Yunlei(曹云雷), Fan Xiaodong(范晓东). Acta Polymerica Sinica(高分子学报), 2020, 51(2): 191-197. doi:10.11777/j.issn1000-3304.2019.19170http://dx.doi.org/10.11777/j.issn1000-3304.2019.19170
Han H D, Shin B C, Choi H S. Eur J Pharm Biopharm, 2006, 62(1): 110-116. doi:10.1016/j.ejpb.2005.07.006http://dx.doi.org/10.1016/j.ejpb.2005.07.006
Matsubara K, Watanabe M, Takeoka Y. Adv Mater, 2007, 46(10): 1688-1692. doi:10.1002/anie.200603554http://dx.doi.org/10.1002/anie.200603554
Ohtsuka Y, Sakai M, Seki T, Ohnuki R, Yoshioka S, Takeoka Y. ACS Appl Mater Interfaces, 2020, 12(48): 54127-54137. doi:10.1021/acsami.0c17687http://dx.doi.org/10.1021/acsami.0c17687
Ji M, Jiang N, Chang J, Sun J. Adv Funct Mater, 2014, 24(34): 5412-5419. doi:10.1002/adfm.201401011http://dx.doi.org/10.1002/adfm.201401011
Cui J, Li Y, Liu L, Chen L, Xu J, Ma J, Fang G, Zhu E, Wu H, Zhao L, Wang L, Huang Y. Nano Lett, 2015, 15(10): 6295-6301. doi:10.1021/acs.nanolett.5b00950http://dx.doi.org/10.1021/acs.nanolett.5b00950
Zeng J, Shi D, Gu Y, Kaneko T, Chen M. Biomacromolecules, 2019, 20(9): 3375-3384. doi:10.1021/acs.biomac.9b00600http://dx.doi.org/10.1021/acs.biomac.9b00600
Lu X, Zhang H, Fei G, Yu B, Tong X, Xia H, Zhao Y. Adv Mater, 2018, 30(14): 1706597. doi:10.1002/adma.201706597http://dx.doi.org/10.1002/adma.201706597
Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y, Xia Y. ACS Nano, 2013, 7(3): 2068-2077. doi:10.1021/nn304332shttp://dx.doi.org/10.1021/nn304332s
Cui Y, Gong H, Wang Y, Li D, Bai H. Adv Mater, 2018, 30(14): 1706807. doi:10.1002/adma.201706807http://dx.doi.org/10.1002/adma.201706807
Kim D Y, Choi S, Cho H, Sun J Y. Adv Mater, 2019, 31(2): 1804080. doi:10.1002/adma.201804080http://dx.doi.org/10.1002/adma.201804080
0
浏览量
109
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构