Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)
Research Article|更新时间:2024-10-08
|
Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)
Li Wen-ze,Liu Gang,Niu Yan-hua,et al.Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)[J].ACTA POLYMERICA SINICA,2022,53(01):67-78.
Li Wen-ze,Liu Gang,Niu Yan-hua,et al.Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)[J].ACTA POLYMERICA SINICA,2022,53(01):67-78. DOI: 10.11777/j.issn1000-3304.2021.21164.
Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)
We designed and synthesized comb-like block copolymer poly[poly(ethylene glycol) methyl ether acrylate
]
(PPEGA) and poly(ethylene glycol)-
b
-PPEGA (PEG-
b
-PPEGA). By mixing with the high-molecular-weight poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) blends
the effect of various PEG structures on the crystallization of PLA stereocomplex system (sc-PLA) was explored. The results measured from optical microscopy (OM) show that homopolymer PEGA and PEG and copolymer PEG-
b
-PPEGA are completely miscible with sc-PLA
whereas PPEGA is immiscible. The
non-isothermal and isothermal crystallization data for all these blends by means of differential scanning calorimetry (DSC) indicate that both PEGA and PEG could promote the formation of stereocomplex crystallites (SCs)
but reduce the crystallinity of homochiral crystallites (HCs). However
introducing PPEGA and PEG-
b
-PPEGA could simultaneously enhance the crystallinity of HCs and SCs. Besides
the melting points of SCs in sc-PLA/PPEGA and sc-PLA/PEG-
b
-PPEGA blends increase with the increasing content of these two copolymers. These might be ascribed to the local interfacial interactions between PLA and the branched-chains PEGA. From polarized optical microscopy (POM)
we could find that the introduction of these four polymers could significantly increase the spherulitic growth rates but reduce the number of nuclei
indicating that the mobility of PLA chains play a key role on the increased crystallinity of SCs. X-ray analysis further revealed that miscible PEGA could induce higher long spacing of SCs in sc-PLA/PEGA blends than that in sc-PLA/PPEGA blends and comb-like PPEGA has a significant impact on the thickening of SCs
resulting in a higher melting point of SCs. In addition
although the block copolymer PEG-
b
-PPEGA formed by PEG and PPEGA promotes the miscibility of PPEGA with PLA
PPEGA would adversely affect the interaction between PEG and PLA molecular chains during crystallization
and thus the synergistic effect of PEG and PPEGA on promoting crystallization is weakened.
Ikada Y, Jamshidi K, Tsuji H, Hyon S. Macromolecules, 1987, 20(4): 904-906. doi:10.1021/ma00170a034http://dx.doi.org/10.1021/ma00170a034
Liu Y L, Shao J, Sun J R, Bian X C, Feng L D, Xiang S, Sun B, Chen Z M, Li G, Chen X S. Polym Degrad Stabil, 2014, 101: 10-17. doi:10.1016/j.polymdegradstab.2014.01.023http://dx.doi.org/10.1016/j.polymdegradstab.2014.01.023
Zhang X W, Nakagawa R, Chan K H K, Kotaki M. Macromolecules, 2012, 45(13): 5494-5500. doi:10.1021/ma300289zhttp://dx.doi.org/10.1021/ma300289z
Xu H, Teng C, Yu M. Polymer, 2006, 47(11): 3922-3928. doi:10.1016/j.polymer.2006.03.090http://dx.doi.org/10.1016/j.polymer.2006.03.090
Tsuji H. Biomaterials, 2003, 24(4): 537-547. doi:10.1016/s0142-9612(02)00365-4http://dx.doi.org/10.1016/s0142-9612(02)00365-4
Tsuji H, Ikada Y. Polymer, 1999, 40(24): 6699-6708. doi:10.1016/s0032-3861(99)00004-xhttp://dx.doi.org/10.1016/s0032-3861(99)00004-x
Wang Gang(王刚), Wang Ke(王柯). Acta Polymerica Sinica(高分子学报), 2018, (9): 1221-1227. doi:10.14133/j.cnki.1008-9357.20180130001http://dx.doi.org/10.14133/j.cnki.1008-9357.20180130001
Sun J R, Yu H Y, Zhuang X L, Chen X S, Jing X B. J Phys Chem B, 2011, 115(12): 2864-2869. doi:10.1021/jp111894mhttp://dx.doi.org/10.1021/jp111894m
Tsuji H, Ikada Y. Macromolecules, 1993, 26(25): 6918-6926. doi:10.1021/ma00077a032http://dx.doi.org/10.1021/ma00077a032
Maillard D, Prud'homme R E. Macromolecules, 2010, 43(9): 4006-4010. doi:10.1021/ma902625phttp://dx.doi.org/10.1021/ma902625p
Bai J, Wang J Y, Wang W T, Fang H G, Xu Z H, Chen X S, Wang Z G. ACS Sustain Chem Eng, 2016, 4(1): 273-283. doi:10.1021/acssuschemeng.5b01110http://dx.doi.org/10.1021/acssuschemeng.5b01110
Bao R Y, Yang W, Wei X F, Xie B H, Yang M B. ACS Sustain Chem Eng, 2014, 2(10): 2301-2309. doi:10.1021/sc500464chttp://dx.doi.org/10.1021/sc500464c
Xie Q, Guo G, Lu W W, Sun C X, Zhou J, Zheng Y, Shan G R, Bao Y Z, Pan P J. Polymer, 2020, (201): 122597. doi:10.1016/j.polymer.2020.122597http://dx.doi.org/10.1016/j.polymer.2020.122597
Bao J N, Xue X J, Li K, Chang X H, Xie Q, Yu C T, Pan P J. J Phys Chem B, 2017, 121(28): 6934-6943. doi:10.1021/acs.jpcb.7b03287http://dx.doi.org/10.1021/acs.jpcb.7b03287
Pan P J, Bao J N, Han L L, Xie Q, Shan G R, Bao Y Z. Polymer, 2016, 98: 80-87. doi:10.1016/j.polymer.2016.06.014http://dx.doi.org/10.1016/j.polymer.2016.06.014
Han L, Shan G, Bao Y, Pan P. J Phys Chem B, 2015, 119(44): 14270-14279. doi:10.1021/acs.jpcb.5b06757http://dx.doi.org/10.1021/acs.jpcb.5b06757
Purnama P, Jung Y, Kim S H. Macromolecules, 2012: 4012-4014. doi:10.1021/ma202814chttp://dx.doi.org/10.1021/ma202814c
Han L L, Yu C T, Zhou J, Shan G R, Bao Y Z, Yun X Y, Dong T, Pan P J. Polymer, 2016, 103: 376-386. doi:10.1016/j.polymer.2016.09.073http://dx.doi.org/10.1016/j.polymer.2016.09.073
Li W, Wang M, Luo H, Niu Y, Huang Y, Li G. Polymer, 2021, 218: 123519. doi:10.1016/j.polymer.2021.123519http://dx.doi.org/10.1016/j.polymer.2021.123519
Zhang Y Q, Xu Z H, Wang Z K, Ding Y S, Wang Z G. RSC Adv, 2014, 4(39): 20582-20591. doi:10.1039/c4ra02167chttp://dx.doi.org/10.1039/c4ra02167c
Chen Y, Zhang Y Q, Jiang F, Wang J Y, Xu Z H, Wang Z G. Sci China Chem, 2016, 59(5): 609-618. doi:10.1007/s11426-015-5515-6http://dx.doi.org/10.1007/s11426-015-5515-6
Lauritzen J I, Hoffman J D. J Appl Phys, 1973, 44(10): 4340-4352. doi:10.1063/1.1661962http://dx.doi.org/10.1063/1.1661962
Hoffman J D, Miller R L. Polymer, 1997, 38(13): 3151-3212. doi:10.1016/s0032-3861(97)00071-2http://dx.doi.org/10.1016/s0032-3861(97)00071-2