Liu Jun,Xia Chuan-jie,Wang Kang-long,et al.Preparation of ZnO Quantum Dots and Composite Films Based on Sodium Alginate Electrodeposition and Applications on Detection[J].ACTA POLYMERICA SINICA,2022,53(02):145-152.
Liu Jun,Xia Chuan-jie,Wang Kang-long,et al.Preparation of ZnO Quantum Dots and Composite Films Based on Sodium Alginate Electrodeposition and Applications on Detection[J].ACTA POLYMERICA SINICA,2022,53(02):145-152. DOI: 10.11777/j.issn1000-3304.2021.21176.
Preparation of ZnO Quantum Dots and Composite Films Based on Sodium Alginate Electrodeposition and Applications on Detection
Electrodeposition of biopolymer shows attractive development on fabricating novel functional materials and devices. ZnO quantum dots (QDs) have drawn increasing attention due to their environmentally friendly and non-toxic features
and good fluorescence properties. This work develops a method based on the coordination electrodeposition of sodium alginate to prepare ZnO QDs and ZnO QDs/sodium alginate nanocomposite films on electrodes. The method has many advantages such as the simple operation
the mild condition
the good controllability and the environmentally friendly process. Moreover
it allows a facile post-treatment for products to directly obtain the nanocomposite films of QDs and biopolymer on electrodes. In the method
sodium alginate was not only used as the electrodeposition biopolymer
but also served as the stabilizing agent for preparing ZnO QDs as well as the main ingredient in the resulting nanocomposite film. TEM observation shows that there are nanoparticles with a relatively uniform size in the nanocomposite film
and that the average size of these nanoparticles is 6.0 nm. The ZnO QDs/sodium alginate nanocomposite film shows a clear orange fluorescence under 365 nm UV light. The UV-Vis spectrum of the nanocomposite film has a clear absorption peak at 340 nm
which is attributed to the typical absorption peak of ZnO QDs. The photoluminescence spectrum of the nanocomposite film shows a clear emission peak at 550 nm
which agrees with the emission peak of ZnO QDs. Th
e above spectral data both prove that there are ZnO QDs in the nanocomposite film. Furthermore
the ZnO QDs/sodium alginate nanocomposite film on the electrode can be applied to conduct electrochemical detection of K
3
[Fe(CN)
6
]
with a detection limit of 2.64 μmol/L. By taking advantage of the fluorescence properties
the ZnO QDs/sodium alginate nanocomposite film can be used for fluorescence detection of Cu
2+
ions. Therefore
this work provides a novel method for the preparation of ZnO QDs and construction of QDs/biopolymer nanocomposite films. The resulting ZnO QDs/sodium alginate nanocomposite film has promising applications in the fields of electrochemical detection and fluorescence detection.
Pei Y, Wang L, Tang K Y, Kaplan D L. Adv Funct Mater, 2021, 31(15): 2008552. doi:10.1002/adfm.202008552http://dx.doi.org/10.1002/adfm.202008552
Xu Anhou(徐安厚), Zhang Xinxin(张新新), Zhao Kongyin(赵孔银), Li Jiajie(李嘉杰), Cui Wenkui(崔文葵). Acta Polymerica Sinica(高分子学报), 2015, (8): 913-920. doi:10.11777/j.issn1000-3304.2015.14445http://dx.doi.org/10.11777/j.issn1000-3304.2015.14445
Dong Diandian(董点点), Zhang Jingwen(张静雯), Tang Jie(唐杰), Wang Jun(王军), Yang Kuan(杨宽), Ma Zhonglei(马忠雷), Zhang Wenbo(张文博), Chen Yongmei(陈咏梅), Ma Jianzhong(马建中). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 864-879. doi:10.11777/j.issn1000-3304.2020.20114http://dx.doi.org/10.11777/j.issn1000-3304.2020.20114
Kim E, Xiong Y, Cheng Y, Wu H C, Liu Y, Morrow B H, Ben-Yoav H, Ghodssi R, Rubloff G W, Shen J N, Bentley W E, Shi X W, Payne G F. Polymers, 2015, 7(1): 1-46. doi:10.3390/polym7010001http://dx.doi.org/10.3390/polym7010001
Geng Z H, Wang X, Guo X C, Zhang Z, Chen Y J, Wang Y F. J Mater Chem B, 2016, 4(19): 3331-3338. doi:10.1039/c6tb00336bhttp://dx.doi.org/10.1039/c6tb00336b
Pan J, Zhang Z, Zhan Z Y, Xiong Y F, Wang Y F, Cao K Y, Chen Y J. Carbohydr Polym, 2020, 242: 116391. doi:10.1016/j.carbpol.2020.116391http://dx.doi.org/10.1016/j.carbpol.2020.116391
Lee K Y, Mooney D J. Prog Polym Sci, 2012, 37(1): 106-126. doi:10.1016/j.progpolymsci.2011.06.003http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003
Shi X W, Tsao C Y, Yang X H, Liu Y, Dykstra P, Rubloff G W, Ghodssi R, Bentley W E, Payne G F. Adv Funct Mater, 2009, 19(13): 2074-2080. doi:10.1002/adfm.200900026http://dx.doi.org/10.1002/adfm.200900026
Zhou W D, Coleman J J. Curr Opin Solid State Mater Sci, 2016, 20(6): 352-360. doi:10.1016/j.cossms.2016.06.006http://dx.doi.org/10.1016/j.cossms.2016.06.006
Wang Yuzhen(王玉珍), Zhao Waiou(赵外鸥), Li Yapeng(李亚鹏), Wang Jingyuan(王静媛). Acta Polymerica Sinica(高分子学报), 2016, (2): 211-218. doi:10.11777/j.issn1000-3304.2016.15175http://dx.doi.org/10.11777/j.issn1000-3304.2016.15175
Sandri C, Krieger M V, Costa W C, da Silva A R, Bechtold I H, Zimmermann L M. Quim Nova, 2017, 40(10): 1215-1227. doi:10.21577/0100-4042.20170114http://dx.doi.org/10.21577/0100-4042.20170114
Sahoo D, Mandal A, Mitra T, Chakraborty K, Bardhan M, Dasgupta A K. J Agric Food Chem, 2018, 66(2): 414-423. doi:10.1021/acs.jafc.7b04188http://dx.doi.org/10.1021/acs.jafc.7b04188
Singh K, Mehta S K. Analyst, 2016, 141(8): 2487-2492. doi:10.1039/c5an02599khttp://dx.doi.org/10.1039/c5an02599k
Singh P, Singh R K, Kumar R. RSC Adv, 2021, 11(4): 2512-2545. doi:10.1039/d0ra08670chttp://dx.doi.org/10.1039/d0ra08670c
Chen L C, Xu N N, Yang H Y, Zhou C, Chi Y W. Electrochim Acta, 2011, 56(3): 1387-1391. doi:10.1016/j.electacta.2010.10.050http://dx.doi.org/10.1016/j.electacta.2010.10.050
Saeed S E, El-Molla M M, Hassan M L, Bakir E, Abdel-Mottaleb M M S, Abdel-Mottaleb M S A. Carbohydr Polym, 2014, 99: 817-824. doi:10.1016/j.carbpol.2013.08.096http://dx.doi.org/10.1016/j.carbpol.2013.08.096
Vidhya K, Saravanan M, Bhoopathi G, Devarajan V P, Subanya S. Appl Nanosci, 2015, 5(2): 235-243. doi:10.1007/s13204-014-0312-7http://dx.doi.org/10.1007/s13204-014-0312-7
Wang X H, Li Y, Du Y M. J Nanosci Nanotechnol, 2009, 9(12): 6866-6875
Qiao B, Zhao S L, Xu Z, Xu X R. Chin Phys B, 2016, 25(9): 098102. doi:10.1088/1674-1056/25/9/098102http://dx.doi.org/10.1088/1674-1056/25/9/098102
Deng J F, Fu Q Y, Luo W, Tong X H, Xiong J H, Zheng Z P. Sens Actuator B-Chem, 2016, 224: 153-158. doi:10.1016/j.snb.2015.10.022http://dx.doi.org/10.1016/j.snb.2015.10.022
Liu X, Xing X X, Li Y X, Chen N, Djerdj I, Wang Y D. New J Chem, 2015, 39(4): 2881-2888. doi:10.1039/c5nj00070jhttp://dx.doi.org/10.1039/c5nj00070j
Asok A, Gandhi M N, Kulkarni A R. Nanoscale, 2012, 4(16): 4943-4946. doi:10.1039/c2nr31044ahttp://dx.doi.org/10.1039/c2nr31044a
Li Y Z, Zhao X, Xu Q, Zhang Q H, Chen D J. Langmuir, 2011, 27(10): 6458-6463. doi:10.1021/la2003063http://dx.doi.org/10.1021/la2003063
Schejn A, Balan L, Piatkowski D, Mackowski S, Lulek J, Schneider R. Opt Mater, 2012, 34(8): 1357-1361. doi:10.1016/j.optmat.2012.02.030http://dx.doi.org/10.1016/j.optmat.2012.02.030
Meeussen J C L, Keizer M G, Dehaan F A M. Environ Sci Technol, 1992, 26(3): 511-516. doi:10.1021/es00027a010http://dx.doi.org/10.1021/es00027a010
Tsierkezos N G, Szroeder P, Fuge R, Ritter U. Ionics, 2015, 21(4): 1081-1088. doi:10.1007/s11581-014-1277-yhttp://dx.doi.org/10.1007/s11581-014-1277-y
Shetti N P, Malode S J, Ilager D, Reddy K R, Shukla S S, Aminabhavi T M. Electroanalysis, 2019, 31(6): 1040-1049. doi:10.1002/elan.201800775http://dx.doi.org/10.1002/elan.201800775
Pabbi M, Mittal S K. Anal Methods, 2017, 9(10): 1672-1680. doi:10.1039/c7ay00111hhttp://dx.doi.org/10.1039/c7ay00111h
Geng S, Lin S M, Li N B, Luo H Q. Sens Actuator B-Chem, 2017, 253: 137-143. doi:10.1016/j.snb.2017.06.118http://dx.doi.org/10.1016/j.snb.2017.06.118