浏览全部资源
扫码关注微信
上海市功能性材料化学重点实验室 华东理工大学化学与分子工程学院 上海 200237
Chun-yan Bao, E-mail: baochunyan@ecust.edu.cn
Published:20 February 2022,
Published Online:15 November 2021,
Received:05 July 2021,
Accepted:13 September 2021
移动端阅览
王学斌,薛源,周耀武等.光交联交替层状自组装(LBL)抗菌膜的制备及其性能研究[J].高分子学报,2022,53(02):133-144.
Wang Xue-bin,Xue Yuan,Zhou Yao-wu,et al.Preparation and Characterization of Photo-crosslinked Layer-by-Layer (LBL) Self-assembled Antibacterial Films[J].ACTA POLYMERICA SINICA,2022,53(02):133-144.
王学斌,薛源,周耀武等.光交联交替层状自组装(LBL)抗菌膜的制备及其性能研究[J].高分子学报,2022,53(02):133-144. DOI: 10.11777/j.issn1000-3304.2021.21182.
Wang Xue-bin,Xue Yuan,Zhou Yao-wu,et al.Preparation and Characterization of Photo-crosslinked Layer-by-Layer (LBL) Self-assembled Antibacterial Films[J].ACTA POLYMERICA SINICA,2022,53(02):133-144. DOI: 10.11777/j.issn1000-3304.2021.21182.
针对静电超分子作用的交替层状自组装(LBL)膜稳定性差、易分解和难以实现应用的问题,设计合成了一种光交联型抗菌LBL多层膜. 该LBL多层膜由修饰有光敏邻硝基苄醇分子的透明质酸(HANB)与季铵化的壳聚糖(ACS)通过静电作用在基片上交替沉积而成. 光照后,HANB上的邻硝基苄醇分子产生活性醛基,与邻近壳聚糖上的氨基发生亚胺偶联反应,实现了LBL多层膜的光交联. 实验证明交联后的LBL膜具有很好的稳定性,能在不同pH值盐溶液中长期保持膜的完整性. 壳聚糖的抗菌特性赋予LBL膜良好的抗菌性能,亲水性生物大分子骨架的选取赋予LBL膜良好的细胞相容性. 与其他化学交联方法相比,邻硝基苄醇光交联策略无需任何引发剂或添加剂的引入,具有更好的生物相容性,为医疗植入物表面抗菌涂层的构建提供新方法.
Bacteria are one
of the oldest life forms on the earth. They have strong adaptability to various environments and can be seen almost everywhere on the earth. Bacteria will adhere to different surfaces and then reproduce to form dense aggregates or biofilms with a thickness of several microns to tens of centimeters
which will seriously affect the properties of materials
especially for medical devices. Bacterial adhesion and biofilm formation on these devices are an important reason for the failure of medical implantation and the formation of large-area medical infection. Therefore
researchers are focusing on developing antibacterial surface coatings to eliminate or prevent the initial adhesion of bacteria and biofilm formation on the surface of materials. Alternating layered self-assembly (LBL) film
as the most popular coating technology
is applicable to the surface of various materials. Due to its advantages of simple operation
high controllability and easy functionalization
LBL film is widely used in separation technology
sensor
controlled drug release
surface modification of biomaterials and so on. However
its inherent shortcomings
such as poor stability
easy decomposition
etc.
greatly limit their applications. To solve the above problems
a kind of photo crosslinking antibacterial LBL membrane was designed and prepared by alternating deposition of photosensitive
o
-nitrobenzyl alcohol modified hyaluronic acid (HANB) and quaternized chitosan (ACS) on the glass substrate through electrostatic interaction. The photoligation reaction of
o
-nitrobenzyl alcohol to amine of chitosan enables the crosslinking of the assembled polyelectrolyte membrane
which stabilizes and maintains the integrity of the membrane for a long time in salt solutions with different pH values. The antibacterial property of chitosan endows LBL membrane with good antibacterial property and strong electrostatic supramolecular interactions with HANB. Cytotoxicity analysis confirms the cytocompatibil
ity of the LBL membranes. Antibacterial experiments show that the non-photocrosslinked LBL membrane shows higher release-sterilization due to the release of quaternized chitosan to the solution. However
the photocrosslinked LBL membrane shows better contact-sterilization due to the membrane stability
which is more friendly to the environment. Compared with other chemical crosslinking methods
o
-nitrobenzyl alcohol photocrosslinking strategy has better biocompatibility without the introduction of any initiator or additive
which provides a new idea for the construction of antibacterial coating on the surface of medical implants.
交替层状自组装膜抗菌涂层光交联细胞相容性
Alternating layered self-assembly filmAntibacterial coatingPhotocrosslinkCytocompatibility
Wei T, Zhan W, Cao L, Hu C, Qu Y, Yu Q, Chen H. ACS Appl Mater Interfaces, 2016, 8: 30048-30057. doi:10.1021/acsami.6b11187http://dx.doi.org/10.1021/acsami.6b11187
He C, Shi Z Q, Cheng C, Lu H Q, Zhou M, Sun S D, Zhao C S. Biomater Sci, 2016, 4: 1431-1440. doi:10.1039/c6bm00494fhttp://dx.doi.org/10.1039/c6bm00494f
Zhao X, Li P, Guo B, Ma P X. Acta Biomater, 2015, 26: 236-248. doi:10.1016/j.actbio.2015.08.006http://dx.doi.org/10.1016/j.actbio.2015.08.006
Zeng Zhe(曾哲), Xu Lingcheng(徐领城), Li Leiqing(李雷清), Hu Yangmin(胡阳敏). Chinese Journal of Antibiotics(中国抗生素杂志), 2020, 45(9): 935-939. doi:10.3969/j.issn.1001-8689.2020.09.016http://dx.doi.org/10.3969/j.issn.1001-8689.2020.09.016
Nicolle L E. Antimicrob Resist Infect Control, 2014, 3(1): 1-7. doi:10.1186/2047-2994-3-23http://dx.doi.org/10.1186/2047-2994-3-23
Fan Lingling(范玲玲), Li bingrui(黎槟瑞), Zhang Haowei(张浩伟), Fang Yan(方艳). Acta Polymerica Sinica(高分子学报), 2021, 52(3): 253-271. doi:10.11777/j.issn1000-3304.2020.20185http://dx.doi.org/10.11777/j.issn1000-3304.2020.20185
Wei T, Yu Q, Chen H. Adv Healthc Mater, 2019, 8(3): 1801381. doi:10.1002/adhm.201801381http://dx.doi.org/10.1002/adhm.201801381
Shang D, Sun X, Shen X, Hang J, Jin L, Shi L. Prog Org Coat, 2018, 121: 142-150. doi:10.1016/j.porgcoat.2018.04.029http://dx.doi.org/10.1016/j.porgcoat.2018.04.029
Hoyos N M, Buxadera P J, Ginebra M P, Manero J M, Gil F J, Mas M C. Colloid Surface B, 2018, 169: 30-40. doi:10.1016/j.colsurfb.2018.04.050http://dx.doi.org/10.1016/j.colsurfb.2018.04.050
Cloutier M, Mantovani D, Rosei F. Trends Biotechnol, 2015, 33(11): 637-652. doi:10.1016/j.tibtech.2015.09.002http://dx.doi.org/10.1016/j.tibtech.2015.09.002
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot J E. Chem Rev, 2014, 114(21): 10976-11026. doi:10.1021/cr500252uhttp://dx.doi.org/10.1021/cr500252u
Zhao C W, Zhou L, Chiao M, Yang W T. Adv Colloid Interface, 2020, 285: 102280. doi:10.1016/j.cis.2020.102280http://dx.doi.org/10.1016/j.cis.2020.102280
Lei Wenqian(雷文茜), Ren Kefeng(任科峰), Chen Xiachao(陈夏超), Hu Mi(胡米), Ji Jian(计剑). Acta Polymerica Sinica(高分子学报), 2017, (5): 744-751. doi:10.11777/j.issn1000-3304.2017.16260http://dx.doi.org/10.11777/j.issn1000-3304.2017.16260
Richardson J J, Bjornmalm M, Caruso F. Science, 2015, 348(6233): aaa2491. doi:10.1126/science.aaa2491http://dx.doi.org/10.1126/science.aaa2491
An Q, Huang T, Shi F. Chem Soc Rev, 2018, 47: 5061-5098. doi:10.1039/c7cs00406khttp://dx.doi.org/10.1039/c7cs00406k
Lin Z, Zhang Q, Qu Y, Chen M, Soyekwo F, Lin C, Zhu A, Liu Q. J Mater Chem A, 2017, 5: 14819-14827. doi:10.1039/c7ta03183ahttp://dx.doi.org/10.1039/c7ta03183a
Chen Dongdong(陈栋栋), Ma Ying(马莹), Sun Junqi(孙俊奇). Acta Polymerica Sinica(高分子学报), 2012, (10): 1047-1054. doi:10.3724/SP.J.1105.2012.12125http://dx.doi.org/10.3724/SP.J.1105.2012.12125
Park S, Han U, Choi D, Hong J. Biomater Res, 2018, 22: 29. doi:10.1186/s40824-018-0139-5http://dx.doi.org/10.1186/s40824-018-0139-5
Amani H, Arzaghi H, Bayandori M, Dezfuli A S, Pazoki-Toroudi H, Shafiee A, Moradi L. Adv Mater Interfaces, 2019, 6(13): 1900572. doi:10.1002/admi.201900572http://dx.doi.org/10.1002/admi.201900572
Ghostine R A, Markarian M Z, Schlenoff J B. J Am Chem Soc, 2013, 135(20): 7636-7646. doi:10.1021/ja401318mhttp://dx.doi.org/10.1021/ja401318m
Klitzing R. Phys Chem Chem Phys, 2006, 8(43): 5012-5033
Bao C, Zhu L, Lin Q, Tian H. Adv Mater, 2015, 27: 1647-1662. doi:10.1002/adma.201403783http://dx.doi.org/10.1002/adma.201403783
Bao Bingkun(鲍丙坤), Liu Tuan(刘湍), Lin Qiuning(林秋宁), Zhu Linyong(朱麟勇). Acta Polymerica Sinica(高分子学报), 2021, 52(6): 646-662. doi:10.11777/j.issn1000-3304.2021.21047http://dx.doi.org/10.11777/j.issn1000-3304.2021.21047
Yang Y, Zhang J, Liu Z, Lin Q, Liu X, Bao C, Wang Y, Zhu L. Adv Mater, 2016, 28 (14): 2724-2730. doi:10.1002/adma.201505336http://dx.doi.org/10.1002/adma.201505336
Zhou Y, Yang H, Wang C, Xue Y, Wang X, Bao C, Zhu L. Chem Sci, 2021, 12 (10): 3627-3632. doi:10.1039/d0sc06049fhttp://dx.doi.org/10.1039/d0sc06049f
0
Views
133
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution