浏览全部资源
扫码关注微信
南京邮电大学 有机电子与信息显示国家重点实验室 信息材料与纳米技术研究院 南京 210023
Peng-fei Sun, E-mail: iampfsun@njupt.edu.cn
Qu-li Fan, E-mail: iamqlfan@njupt.edu.cn
Published:20 February 2022,
Published Online:22 November 2021,
Received:11 September 2021,
Revised:21 October 2021,
移动端阅览
王超,孙鹏飞,范曲立.树枝状高分子修饰的水溶性近红外二区荧光聚合物的合成及其在肿瘤相关抗原载运中的应用[J].高分子学报,2022,53(02):174-184.
Wang Chao,Sun Peng-fei,Fan Qu-li.NIR-Ⅱ Fluorescence Probe Based on Polyamidoamine Dendrimers for Immunotherapy as Antigen Carrier[J].ACTA POLYMERICA SINICA,2022,53(02):174-184.
王超,孙鹏飞,范曲立.树枝状高分子修饰的水溶性近红外二区荧光聚合物的合成及其在肿瘤相关抗原载运中的应用[J].高分子学报,2022,53(02):174-184. DOI: 10.11777/j.issn1000-3304.2021.21192.
Wang Chao,Sun Peng-fei,Fan Qu-li.NIR-Ⅱ Fluorescence Probe Based on Polyamidoamine Dendrimers for Immunotherapy as Antigen Carrier[J].ACTA POLYMERICA SINICA,2022,53(02):174-184. DOI: 10.11777/j.issn1000-3304.2021.21192.
通过在具有供体-受体-供体结构的近红外二区(NIR-Ⅱ)荧光分子(TTQ-F)的侧链上修饰聚酰胺-胺型树枝状高分子(PAMAM)合成了一种NIR-Ⅱ荧光高分子(TTQ-F-PAMAM). 该树枝状修饰的高分子不仅可以实现在900~1200 nm近红外二区范围的荧光成像,同时有着良好的光稳定性. PAMAM作为一种三维、高度有序的新型高分子,可以控制和设计分子的大小与功能基团,且具有较好的水溶性与单分散性. 而TTQ-F-PAMAM上独特的PAMAM结构所带来的大量氨基,使其对卵清蛋白(OVA)的包载率可以达到16.43%. 更重要的是,负载OVA的同时,可以有效载运至树突状细胞(dendritic cell,DC)内,并在其细胞环境中加速OVA的释放从而进一步激活DC的免疫反应. 具体表现为DC细胞膜表面共刺激因子CD80和CD86的表达大大提高,以及分泌肿瘤坏死因子-
α
(tumor necrosis factor-
α
,TNF-
α
)和白细胞介素-12p70(Interleukin-12p70,IL-12p70)的能力增强. 本工作不仅实现了对肿瘤相关抗原的载运以及对抗原提呈细胞的激活,而且其近红外成像能力可以为今后的免疫治疗研究提供新的策略与方法.
In this study
we design and synthesize a second near-infrared window (NIR-Ⅱ) fluorescence molecule (TTQ-F-PAMAM) by modifying polyamidoamine dendrimers on donor-acceptor-donor (D-A-D) NIR-Ⅱ fluorescence core TTQ-F. TTQ-F-PAMAM can realize fluorescence image during 900-1200 nm excited by 808 nm laser
and sh
ows outstanding photostability. According to the dynamic light scattering (DLS) and transmission electron microscopy (TEM) results
the hydrodynamic size of TTQ-F-PAMAM was approximately 45 nm. As shown in the NIR-Ⅱ images of TTQ-F-PAMAM at different depths
the tissue penetration of NIR-Ⅱ fluorescence signal from TTQ-F-PAMAM can reach up to 4 mm. Owing to the polyamidoamine dendrimers
TTQ-F-PAMAM showed great antigen-loading capacity. And the MTT assay showed that TTQ-F-PAMAM exerted lower cell toxicity on cells. Ovalbumin (OVA)
a model antigen in immune research
could be adsorbed onto TTQ-F-PAMAM by electrostatic binding. The loading capacity of TTQ-F-PAMAM was 16.43%. TTQ-F-PAMAM@OVA
the nanoparticles loaded with antigen can easier transported to antigen presenting cells than free OVA. Dendritic cell (DC) is the major antigen presenting cell in innate immunity and plays an important role in cancer suppression. After cell uptake of TTQ-F-PAMAM@OVA
the antigen induces the maturation of DC and promotes specific anti-tumor immunity. Compared with other groups
the percentage of both CD80 and CD86 significantly increased after cultured with TTQ-F-PAMAM@OVA. These cells activated by TTQ-F-PAMAM can release tumor necrosis factor-
α
(TNF-
α
) and interleukin-12p70 (IL-12p70). The secretion of TNF-
α
and IL-12p70 from DCs incubated with TTQ-F-PAMAM@OVA was much higher than that incubated with free TTQ-F-PAMAM or OVA. TTQ-F-PAMAM was used not only as a NIR-Ⅱ fluorescence probe
but also as the delivery of proteins to antigen presenting cells. This treatment strategy may greatly improve the efficiency of cancer therapy and provides a new method for immunotherapy research.
树枝状高分子近红外二区荧光成像抗原蛋白负载
Polyamidoamine dendrimersNIR-Ⅱ fluorescence imagingImmune therapy
Hong G, Wu J Z, Robinson J T, Wang H, Zhang B, Dai H. Nat Commun, 2012, 3: 700. doi:10.1038/ncomms1698http://dx.doi.org/10.1038/ncomms1698
Liu Z, Tabakman S, Sherlock S, Li X, Chen Z, Jiang K, Fan S. Nano Res, 2010, 3: 222-233. doi:10.1007/s12274-010-1025-1http://dx.doi.org/10.1007/s12274-010-1025-1
Robinson J T, Hong G, Liang Y, Zhang B, Yaghi O K, Dai H. J Am Chem Soc, 2012, 134: 10664-10669. doi:10.1021/ja303737ahttp://dx.doi.org/10.1021/ja303737a
Antaris A L, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S. Nat Mater, 2016, 15: 235-242. doi:10.1038/nmat4476http://dx.doi.org/10.1038/nmat4476
Yang Q, Hu Z, Zhu S, Ma R, Ma H, Ma Z, Wan H, Zhu T, Jiang Z, Liu W, Jiao L, Sun H, Liang Y, Dai H. J Am Chem Soc, 2018, 140: 1715-1724. doi:10.1021/jacs.7b10334http://dx.doi.org/10.1021/jacs.7b10334
Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C, Riman R, Moghe P. Nat Commun, 2013, 4: 2199. doi:10.1038/ncomms3199http://dx.doi.org/10.1038/ncomms3199
Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q. J Am Chem Soc, 2010, 132: 1470-1471. doi:10.1021/ja909490rhttp://dx.doi.org/10.1021/ja909490r
Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q. Chem Mater, 2013, 25: 2503-2509. doi:10.1021/cm400812vhttp://dx.doi.org/10.1021/cm400812v
Jin T, Huang C, Cui M, Yang Y, Wang Z, Zhu W, Qian X. J Mater Chem B, 2020, 8: 10686-10699. doi:10.1039/d0tb01829ehttp://dx.doi.org/10.1039/d0tb01829e
Hong G, Zou Y, Antaris A L, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y, Wu J, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H. Nat Commun, 2014, 5: 4206. doi:10.1038/ncomms5206http://dx.doi.org/10.1038/ncomms5206
Li J, Pu K. Chem Soc Rev, 2019, 48: 38-71. doi:10.1039/c8cs00001hhttp://dx.doi.org/10.1039/c8cs00001h
Jiang Y, Pu K. Adv Biosyst, 2018, 2: 1700262. doi:10.1002/adbi.201700262http://dx.doi.org/10.1002/adbi.201700262
Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris A L, Zhang B, Zou Y, Dai H. Angew Chem Int Ed, 2013, 52: 13002-13006. doi:10.1002/anie.201307346http://dx.doi.org/10.1002/anie.201307346
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z J. Nat Commun, 2016, 7: 13193. doi:10.1038/ncomms13193http://dx.doi.org/10.1038/ncomms13193
Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Nat Commun, 2017, 8: 902. doi:10.1038/s41467-017-01050-0http://dx.doi.org/10.1038/s41467-017-01050-0
Wang H, Mooney D J. Nat Mater, 2018, 17: 761-772. doi:10.1038/s41563-018-0147-9http://dx.doi.org/10.1038/s41563-018-0147-9
Castano A P, Mroz P, Hamblin M R. Nat Rev Cancer, 2006, 6: 535-545. doi:10.1038/nrc1894http://dx.doi.org/10.1038/nrc1894
DoMling A, Holak T A. Angew Chem Int Ed, 2014, 53: 2286-2288. doi:10.1002/anie.201307906http://dx.doi.org/10.1002/anie.201307906
Xiang J, Xu L, Gong H, Zhu W, Wang C, Xu J, Feng L, Cheng L, Peng R, Liu Z. ACS Nano, 2015, 9: 6401-6411. doi:10.1021/acsnano.5b02014http://dx.doi.org/10.1021/acsnano.5b02014
Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F, Shen Z, Liu Y, He Z, Lau J, Niu G, Kiesewetter D, Hu S, Chen X. ACS Nano, 2019, 13: 3083-3094. doi:10.1021/acsnano.8b08346http://dx.doi.org/10.1021/acsnano.8b08346
Miu Weimin(缪玮珉), Wu Jiasi(巫佳思), Tong Qisong(童其松), Huang Yongcong(黄永聪), Du Jinzhi(杜金志). Acta Polymerica Sinica(高分子学报), 2020, 51(5): 548-558. doi:10.11777/j.issn1000-3304.2020.19227http://dx.doi.org/10.11777/j.issn1000-3304.2020.19227
Fontana F, Liu D, Hirvonen J, Santos H A. Nanobiotechnology. 2017, 9: 1421. doi:10.1002/wnan.1459http://dx.doi.org/10.1002/wnan.1459
Pawlaczyk M, Schroeder G. ACS Appl Polym Mater, 2021, 3: 956-967. doi:10.1021/acsapm.0c01254http://dx.doi.org/10.1021/acsapm.0c01254
Kim S H, Katzenellenbogen J A. Angew Chem Int Ed, 2006, 45: 7243-7248. doi:10.1002/anie.200601923http://dx.doi.org/10.1002/anie.200601923
Zhang Huaijing(张怀敬), He Hua(何华), Lv Yanni(吕燕妮), Gu Yan(顾艳), Chuong Phamhuy. Acta Polymerica Sinica(高分子学报), 2010, (7): 876-883. doi:10.3724/sp.j.1105.2010.09253http://dx.doi.org/10.3724/sp.j.1105.2010.09253
Yang Ling(杨岭), Luo Yufei(罗宇飞), Jia Xinru(贾欣茹), Huang Lan(黄兰), Ji Yan(吉岩), Wang Bingbing(王冰冰), Wei Yan(危岩). Acta Polymerica Sinica(高分子学报), 2004, 5: 780-784. doi:10.3321/j.issn:1000-3304.2004.02.030http://dx.doi.org/10.3321/j.issn:1000-3304.2004.02.030
Huang Ting(黄婷), Chen Yan(陈妍), Sun Pengfei(孙鹏飞), Fan Quli(范曲立), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 346-354. doi:10.11777/j.issn1000-3304.2019.19192http://dx.doi.org/10.11777/j.issn1000-3304.2019.19192
Wang Bingbing(王冰冰), Luo Yufei(罗宇飞), Jia Xinru(贾欣茹), Gong Yongmei(龚泳梅), Ji Yan(吉岩), Yang Ling(杨岭), Wei Yan(危岩). Acta Polymerica Sinica(高分子学报), 2004, (2): 304-308. doi:10.3321/j.issn:1000-3304.2004.02.030http://dx.doi.org/10.3321/j.issn:1000-3304.2004.02.030
Wang C, Sun P, Wang G, Yuan P C, Jiang R, Wang W, Huang W. ACS Appl Bio Mater, 2018, 1: 1972-1982. doi:10.1021/acsabm.8b00496http://dx.doi.org/10.1021/acsabm.8b00496
Wang C, Sun B, Bao H, Wang T, Huang W. Sci China Chem, 2020, 63: 1272-1280. doi:10.1007/s11426-020-9780-8http://dx.doi.org/10.1007/s11426-020-9780-8
He K, Chen S, Chen Y, Li J, Sun P, Lu X, Fan Q, Huang W. ACS Appl Polym Mater, 2021, 3: 3238-3246. doi:10.1021/acsapm.1c00456http://dx.doi.org/10.1021/acsapm.1c00456
Chen S, Sun B, Miao H, Wang G, Sun P, Li J, Wang W, Fan Q, Huang W. ACS Mater Lett, 2020, 2: 174-183. doi:10.1021/acsmaterialslett.9b00480http://dx.doi.org/10.1021/acsmaterialslett.9b00480
Chen S, Miao H, Jiang X, Sun P, Fan Q, Wei H. Biomaterials, 2021, 275: 120916. doi:10.1016/j.biomaterials.2021.120916http://dx.doi.org/10.1016/j.biomaterials.2021.120916
Peng Jinwen(彭锦雯), Du Xiaolong(杜肖龙), Chen Yan(陈妍), Sun Pengfei(孙鹏飞), Deng Weixing(邓卫星), Fan Quli(范曲立). Acta Polymerica Sinica(高分子学报), 2020, 51(11): 1275-1284. doi:10.11777/j.issn1000-3304.2020.20076http://dx.doi.org/10.11777/j.issn1000-3304.2020.20076
Hu Hui(胡晖), Cao Zhonglin(曹中林), Fan Xiaodong(范晓东), Huang Yi(黄怡). Acta Polymerica Sinica(高分子学报), 2006, (4): 574-580. doi:10.3321/j.issn:1000-3304.2006.04.005http://dx.doi.org/10.3321/j.issn:1000-3304.2006.04.005
Kim S, Phuengkham H, Noh Y, Lee H, Um S, Lim Y. Adv Funct Mater, 2016, 26: 8072-8082. doi:10.1002/adfm.201603651http://dx.doi.org/10.1002/adfm.201603651
Rui K, Ochyl L J, Bahjat K S, Schwendeman A, Moon J. Nat Mater, 2016, 16: 489-496. doi:10.1038/nmat4822http://dx.doi.org/10.1038/nmat4822
0
Views
104
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution