浏览全部资源
扫码关注微信
1.泰山学院物理与电子工程学院 泰安 271000
2.北京交通大学光信息与发光技术教育部重点实验室 北京 100044
Published:20 April 2022,
Published Online:26 January 2022,
Received:30 October 2021,
Accepted:09 December 2021
移动端阅览
王健,赵子进,杨凯旋等.倍增型有机光电探测器的研究进展[J].高分子学报,2022,53(04):331-353.
Wang Jian,Zhao Zi-jin,Yang Kai-xuan,et al.A Critical Review on Photomultiplication Type Organic Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(04):331-353.
王健,赵子进,杨凯旋等.倍增型有机光电探测器的研究进展[J].高分子学报,2022,53(04):331-353. DOI: 10.11777/j.issn1000-3304.2021.21328.
Wang Jian,Zhao Zi-jin,Yang Kai-xuan,et al.A Critical Review on Photomultiplication Type Organic Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(04):331-353. DOI: 10.11777/j.issn1000-3304.2021.21328.
介绍了倍增型有机光电探测器的发展、工作机理、性能调控及相关的应用探索. 2015年张福俊课题组以单载流子传输通道的给受体混合(质量比约为100:1)薄膜为有源层,率先报道了界面附近受陷电子诱导空穴隧穿注入的倍增型有机光电探测器,并抑制了器件的暗电流密度. 通过优化有源层厚度调控了界面附近受陷电荷的体分布,制备出超窄响应的倍增型有机光电探测器,并提出载流子注入窄化的新概念. 利用三元策略及双层策略,制备出了宽响应倍增型有机光电探测器. 利用光子俘获层调控器件的响应范围,以及利用倍增层获得了较大的外量子效率,将二极管型与倍增型器件的优势集中在一个器件中. 引入光学调控层或将宽带隙材料引入有源层中,调控界面附近受陷电子分布,优化了器件的光谱形状,进而制备出响应光谱宽且平的倍增型有机光电探测器. 将制备的倍增型有机光电探测器应用到心率监测、单像素成像及光开关等领域,取得较好的应用成果.
This review systematically summarizes the development
working mechanism
performance optimization and relevant application exploration of photomultiplication type organic photodetectors (PM-OPDs). In 2015
Prof. Fujun Zhang's group firstly reported PM-OPDs on the basis of active layers with single carrier transport channels. Electron traps are formed with acceptor surrounded by donor in active layers with the weight ratio of donor to acceptor as about 100:1. The working mechanism of PM-OPDs is attributed to hole tunneling injection assisted by interfacial trapped electron. Dark current density of PM-OPDs can be well suppressed due to the single carrier transport in active layers with rather less acceptor. New concept of "charge injection narrowing" was firstly proposed to prepare ultra-narrowband PM-OPDs
which is realized by adjusting thickness of active layers to control interfacial trapped electron distribution. Broadband PM-OPDs can be obtained
via
ternary strategy or double-layer scheme. Double-layer scheme consists of one absorption layer and one PM layer
which are individually employed to tune spectral response range of PM-OPDs and achieve external quantum efficiency greater than 100%. The advantages of photodiode type photodetectors and PM-OPDs can be integrated into one device by employing double-layer scheme. PM-OPDs with broad and flat spectral response can be achieved
via
optimizing interfacial trapped electron distribution
which can be regulated by inserting optical field adjusting layer or incorporating wide bandgap semiconductor materials into active layers. The PM-OPDs have been successfully applied in many fields
such as heart rate monitoring
single pixel imaging and optical switch. The successful practical applications indicate good development prospect of PM-OPDs.
倍增型有机光电探测器隧穿注入外量子效率响应范围
Photomultiplication type organic photodetectorsTunnelling injectionExternal quantum efficiencySpectral range
Liu J, Xia F, Xiao D, García de Abajo F J, Sun D. Nat Mater, 2020, 19(8): 830-837. doi:10.1038/s41563-020-0715-7http://dx.doi.org/10.1038/s41563-020-0715-7
Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6(6): 605-613. doi:10.1038/s41560-021-00820-xhttp://dx.doi.org/10.1038/s41560-021-00820-x
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33(41): 2102420. doi:10.1002/adma.202102420http://dx.doi.org/10.1002/adma.202102420
Lee H, Kim E, Lee Y, Kim H, Lee J, Kim M, Yoo H J, Yoo S. Sci Adv, 2018, 4(11): eaas9530. doi:10.1126/sciadv.aas9530http://dx.doi.org/10.1126/sciadv.aas9530
Fuentes-Hernandez C, Chou W F, Khan T M, Diniz L, Lukens J, Larrain F A, Rodriguez-Toro V A, Kippelen B. Science, 2020, 370(6517): 698-701. doi:10.1126/science.aba2624http://dx.doi.org/10.1126/science.aba2624
Miao J, Zhang F. Laser Photonics Rev, 2019, 13(2): 1800204. doi:10.1002/lpor.201800204http://dx.doi.org/10.1002/lpor.201800204
Zhao Z, Xu C, Niu L, Zhang X, Zhang F. Laser Photonics Rev, 2020, 14(11): 2000262. doi:10.1002/lpor.202000262http://dx.doi.org/10.1002/lpor.202000262
Liu J, Gao M, Kim J, Zhou Z, Chung D S, Yin H, Ye L. Mater Today, 2021, 51: 475-503. doi:10.1016/j.mattod.2021.08.004http://dx.doi.org/10.1016/j.mattod.2021.08.004
Simone G, Dyson M J, Meskers S C J, Janssen R A J, Gelinck G H. Adv Funct Mater, 2020, 30(20): 1904205. doi:10.1002/adfm.201904205http://dx.doi.org/10.1002/adfm.201904205
Wang J, Lee S. Sensors, 2011, 11(1): 696-718. doi:10.3390/s110100696http://dx.doi.org/10.3390/s110100696
Jansen-van Vuuren R D, Armin A, Pandey A K, Burn P L, Meredith P. Adv Mater, 2016, 28(24): 4766-4802. doi:10.1002/adma.201505405http://dx.doi.org/10.1002/adma.201505405
Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948): 1665-1667. doi:10.1126/science.1176706http://dx.doi.org/10.1126/science.1176706
Dou L, Yang Y, You J, Hong Z, Chang W H, Li G, Yang Y. Nat Commun, 2014, 5(1): 5404. doi:10.1038/ncomms6404http://dx.doi.org/10.1038/ncomms6404
Fang Y, Armin A, Meredith P, Huang J. Nat Photon, 2019, 13(1): 1-4. doi:10.1038/s41566-018-0288-zhttp://dx.doi.org/10.1038/s41566-018-0288-z
Shen L, Fang Y, Wang D, Bai Y, Deng Y, Wang M, Lu Y, Huang J. Adv Mater, 2016, 28(48): 10794-10800. doi:10.1002/adma.201603573http://dx.doi.org/10.1002/adma.201603573
Li L, Zhang F, Wang J, An Q, Sun Q, Wang W, Zhang J, Teng F. Sci Rep, 2015, 5(1): 9181. doi:10.1038/srep09181http://dx.doi.org/10.1038/srep09181
Park T, Lee S, Kang M, Yu S H, Nam G H, Sim K M, Chung D S. Chem Eng J, 2021, 418: 129354. doi:10.1016/j.cej.2021.129354http://dx.doi.org/10.1016/j.cej.2021.129354
Hiramoto M, Imahigashi T, Yokoyama M. Appl Phys Lett, 1994, 64(2): 187-189. doi:10.1063/1.111527http://dx.doi.org/10.1063/1.111527
Katsume T, Hiramoto M, Yokoyama M. Appl Phys Lett, 1996, 69(24): 3722-3724. doi:10.1063/1.117201http://dx.doi.org/10.1063/1.117201
Lee J W, Kim D Y, So F. Adv Funct Mater, 2015, 25(8): 1233-1238. doi:10.1002/adfm.201403673http://dx.doi.org/10.1002/adfm.201403673
Campbell I H, Crone B K. J Appl Phys, 2007, 101(2): 024502. doi:10.1063/1.2422909http://dx.doi.org/10.1063/1.2422909
Chen H Y, Lo M K F, Yang G, Monbouquette H G, Yang Y. Nat Nanotech, 2008, 3(9): 543-547. doi:10.1038/nnano.2008.206http://dx.doi.org/10.1038/nnano.2008.206
Wei H, Fang Y, Yuan Y, Shen L, Huang J. Adv Mater, 2015, 27(34): 4975-4981. doi:10.1002/adma.201502292http://dx.doi.org/10.1002/adma.201502292
Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J. Nat Nanotech, 2012, 7(12): 798-802. doi:10.1038/nnano.2012.187http://dx.doi.org/10.1038/nnano.2012.187
Chen F C, Chien S C, Cious G L. Appl Phys Lett, 2010, 97(10): 103301. doi:10.1063/1.3488017http://dx.doi.org/10.1063/1.3488017
Chuang S T, Chien S C, Chen F C. Appl Phys Lett, 2012, 100(1): 013309. doi:10.1063/1.3675573http://dx.doi.org/10.1063/1.3675573
Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M. ACS Appl Mater Interfaces, 2015, 7(10): 5890-5897. doi:10.1021/acsami.5b00041http://dx.doi.org/10.1021/acsami.5b00041
Jang M S, Yoon S, Sim K M, Cho J, Chung D S. J Phys Chem Lett, 2018, 9(1): 8-12. doi:10.1021/acs.jpclett.7b02918http://dx.doi.org/10.1021/acs.jpclett.7b02918
Hammond W T, Xue J. Appl Phys Lett, 2010, 97(7): 073302. doi:10.1063/1.3481407http://dx.doi.org/10.1063/1.3481407
Melancon J M, Živanović S R. Appl Phys Lett, 2014, 105(16): 163301. doi:10.1063/1.4898000http://dx.doi.org/10.1063/1.4898000
Yang D, Zhou X, Wang Y, Vadim A, Alshehri S M, Ahamad T, Ma D. J Mater Chem C, 2016, 4(11): 2160-2164. doi:10.1039/c5tc04188khttp://dx.doi.org/10.1039/c5tc04188k
Zhou X, Yang D, Ma D, Vadim A, Ahamad T, Alshehri S M. Adv Funct Mater, 2016, 26(36): 6619-6626. doi:10.1002/adfm.201601980http://dx.doi.org/10.1002/adfm.201601980
Li X, Wang S, Xiao Y, Li X. J Mater Chem C, 2016, 4(24): 5584-5592. doi:10.1039/c6tc00854bhttp://dx.doi.org/10.1039/c6tc00854b
Dong R, Bi C, Dong Q, Guo F, Yuan Y, Fang Y, Xiao Z, Huang J. Adv Opt Mater, 2014, 2(6): 549-554. doi:10.1002/adom.201400023http://dx.doi.org/10.1002/adom.201400023
Shen L, Fang Y, Wei H, Yuan Y, Huang J. Adv Mater, 2016, 28(10): 2043-2048. doi:10.1002/adma.201503774http://dx.doi.org/10.1002/adma.201503774
Hammond W T, Mudrick J P, Xue J. J Appl Phys, 2014, 116(21): 214501. doi:10.1063/1.4902149http://dx.doi.org/10.1063/1.4902149
Li L, Zhang F, Wang W, Fang Y, Huang J. Phys Chem Chem Phys, 2015, 17(45): 30712-30720. doi:10.1039/c5cp05557ahttp://dx.doi.org/10.1039/c5cp05557a
Wang C, Lai J, Chen Q, Zhang F, Chen L. Nano Lett, 2021, 21(19): 8474-8480. doi:10.1021/acs.nanolett.1c03185http://dx.doi.org/10.1021/acs.nanolett.1c03185
Wang W, Zhang F, Li L, Gao M, Hu B. ACS Appl Mater Interfaces, 2015, 7(40): 22660-22668. doi:10.1021/acsami.5b07522http://dx.doi.org/10.1021/acsami.5b07522
Wang J, Chen J, Hu H, Yin H, Xiao J, Zhang L. Phys. Status Solidi RRL, 2021, 15(6): 2100107. doi:10.1002/pssr.202100007http://dx.doi.org/10.1002/pssr.202100007
Wang W, Zhang F, Bai H, Li L, Gao M, Zhang M, Zhan X. Nanoscale, 2016, 8(10): 5578-5586. doi:10.1039/c6nr00079ghttp://dx.doi.org/10.1039/c6nr00079g
Miao J, Du M, Fang Y, Zhang F. Nanoscale, 2019, 11(35): 16406-16413. doi:10.1039/c9nr03552dhttp://dx.doi.org/10.1039/c9nr03552d
Zhao Z, Li C, Shen L, Zhang X, Zhang F. Nanoscale, 2020, 12(2): 1091-1099. doi:10.1039/C9NR09926Chttp://dx.doi.org/10.1039/C9NR09926C
Yoon S, Lee G S, Sim K M, Kim M J, Kim Y H, Chung D S. Adv Funct Mater, 2021, 31(1): 2006448. doi:10.1002/adfm.202006448http://dx.doi.org/10.1002/adfm.202006448
Sim H R, Kang M, Yu S H, Nam G H, Lim B, Chung D S. Adv Opt Mater, 2021, 9(4): 2001836. doi:10.1002/adom.202001836http://dx.doi.org/10.1002/adom.202001836
Mone M, Yang K, Murto P, Zhang F, Wang E. Chem Commun, 2020, 56(84): 12769-12772. doi:10.1039/d0cc03933khttp://dx.doi.org/10.1039/d0cc03933k
Xu C, Jin K, Xiao Z, Zhao Z, Ma X, Wang X, Li J. Adv Funct Mater, 2021, 31(31): 2107934. doi:10.1002/adfm.202170227http://dx.doi.org/10.1002/adfm.202170227
Ma X, Zeng A, Gao J, Hu Z, Xu C, Son J H, Jeong S Y, Zhang C, Li M, Wang K, Yan H, Ma Z, Wang Y, Woo H Y, Zhang F. Natl Sci Rev, 2021, 8(8): nwaa305. doi:10.1093/nsr/nwaa305http://dx.doi.org/10.1093/nsr/nwaa305
Xu W, Ma X, Son J H, Jeong S Y, Niu L, Xu C, Zhang S, Zhou Z, Gao J, Woo H Y, Zhang J, Wang J, Zhang F. Small, 2021, doi: 10.1002/smll.202104215http://dx.doi.org/10.1002/smll.202104215
Hu Z, Wang J, Ma X, Gao J, Xu C, Wang X, Zhang X, Wang Z, Zhang F. J Mater Chem A, 2021, 9(11): 6797-6804. doi:10.1039/d1ta01135ahttp://dx.doi.org/10.1039/d1ta01135a
Wang X, Sun Q, Gao J, Wang J, Xu C, Ma X, Zhang F. Energies, 2021, 14(14): 4200. doi:10.3390/en14144200http://dx.doi.org/10.3390/en14144200
Wang W, Zhang F, Li L, Zhang M, An Q, Wang J, Sun Q. J Mater Chem C, 2015, 3(28): 7386-7393. doi:10.1039/c5tc01383fhttp://dx.doi.org/10.1039/c5tc01383f
An Q, Zhang F, Li L, Wang J, Sun Q, Zhang J, Tang W, Deng Z. ACS Appl Mater Interfaces, 2015, 7(6): 3691-3698. doi:10.1021/acsami.5b00308http://dx.doi.org/10.1021/acsami.5b00308
Gao M, Wang W, Li L, Miao J, Zhang F. Chin Phys B, 2017, 26(1): 018201. doi:10.1088/1674-1056/26/1/018201http://dx.doi.org/10.1088/1674-1056/26/1/018201
Wang J, Chen S, Yin Z, Zheng Q. J Mater Chem C, 2020, 8(40): 14049-14055. doi:10.1039/d0tc02708ahttp://dx.doi.org/10.1039/d0tc02708a
Yang K, Wang J, Zhao Z, Zhou Z, Liu M, Zhang J, He Z, Zhang F. ACS Appl Mater Interfaces, 2021, 13(18): 21565-21572. doi:10.1021/acsami.1c06486http://dx.doi.org/10.1021/acsami.1c06486
Zhang M, Xiao Z, Gao W, Liu Q, Jin K, Wang W, Mi Y, An Q, Ma X, Liu X, Yang C, Ding L, Zhang F. Adv Energy Mater, 2018, 8: 1801968. doi:10.1002/aenm.201801968http://dx.doi.org/10.1002/aenm.201801968
Yang K, Zhao Z, Liu M, Zhou Z, Wang K, Ma X, Wang J, He Z, Zhang F. Chem Eng J, 2022, 427: 131802. doi:10.1016/j.cej.2021.131802http://dx.doi.org/10.1016/j.cej.2021.131802
Wang Y, Wang F, Gao J, Yan Y, Wang X, Wang X, Xu C, Ma X, Zhang J, Zhang F. J Mater Chem C, 2021, 9: 9892-9898. doi:10.1039/d1tc02748dhttp://dx.doi.org/10.1039/d1tc02748d
Liu M, Xu Y, Gao Z, Zhang C, Yu J, Wang J, Ma X, Hu H, Yin H, Zhang F, Man B, Sun Q. Nanoscale, 2021, 13(25): 11128-11137. doi:10.3390/sym13122278http://dx.doi.org/10.3390/sym13122278
Yang K, Wang J, Miao J, Zhang J, Zhang F. J Mater Chem C, 2019, 7(31): 9633-9640. doi:10.1039/c9tc02751chttp://dx.doi.org/10.1039/c9tc02751c
Miao J, Du M, Fang Y, Zhang X, Zhang F. Sci China Chem, 2019, 62(12): 1619-1624. doi:10.1007/s11426-019-9582-7http://dx.doi.org/10.1007/s11426-019-9582-7
Zhao Z, Liu B, Xu C, Liu M, Yang K, Zhang X, Xu Y, Zhang J, Li W, Zhang F. J Mater Chem C, 2021, 9(16): 5349-5355. doi:10.1039/d1tc00939ghttp://dx.doi.org/10.1039/d1tc00939g
Neethipathi D K, Ryu H S, Jang M S, Yoon S, Sim K M, Woo H Y, Chung D S. ACS Appl Mater Interfaces, 2019, 11(23): 21211-21217. doi:10.1021/acsami.9b01090http://dx.doi.org/10.1021/acsami.9b01090
Yang K, Wang J, Zhao Z, Zhao F, Wang K, Zhang X, Zhang F. Org Electron, 2020, 83: 105739. doi:10.1016/j.orgel.2020.105739http://dx.doi.org/10.1016/j.orgel.2020.105739
Liu M, Miao J, Wang J, Zhao Z, Yang K, Zhang X, Peng H, Zhang F. J Mater Chem C, 2020, 8(29): 9854-9860. doi:10.1039/d0tc01793khttp://dx.doi.org/10.1039/d0tc01793k
Zhao Z, Wang J, Xu C, Yang K, Zhao F, Wang K, Zhang X, Zhang F. J Phys Chem Lett, 2020, 11(2): 366-373. doi:10.1021/acs.jpclett.9b03323http://dx.doi.org/10.1021/acs.jpclett.9b03323
Liu M, Wang J, Yang K, Liu M, Zhao Z, Zhang F. Phys Chem Chem Phys, 2021, 23(4): 2923-2929. doi:10.1039/d0cp05811dhttp://dx.doi.org/10.1039/d0cp05811d
Liu M, Wang J, Yang K, Zhao Z, Zhou Z, Ma Y, Shen L, Ma X, Zhang F. J Mater Chem C, 2021, 9(19): 6357-6364. doi:10.1039/d1tc00555chttp://dx.doi.org/10.1039/d1tc00555c
Nishiwaki S, Nakamura T, Hiramoto M, Fujii T, Suzuki M A. Nat Photon, 2013, 7(3): 240-246. doi:10.1038/nphoton.2012.345http://dx.doi.org/10.1038/nphoton.2012.345
Li W, Li D, Dong G, Duan L, Sun J, Zhang D, Wang L. Laser Photon Rev, 2016, 10(3): 473-480. doi:10.1002/lpor.201500279http://dx.doi.org/10.1002/lpor.201500279
An K H, O'Connor B, Pipe K P, Shtein M. Org Electron, 2009, 10(6): 1152-1157. doi:10.1016/j.orgel.2009.06.003http://dx.doi.org/10.1016/j.orgel.2009.06.003
Sobhani A, Knight M W, Wang Y, Zheng B, King N S, Brown L V, Fang Z, Nordlander P, Halas N J. Nat Commun, 2013, 4(1): 1643. doi:10.1038/ncomms2642http://dx.doi.org/10.1038/ncomms2642
Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat Commun, 2015, 6(1): 6343. doi:10.1038/ncomms7343http://dx.doi.org/10.1038/ncomms7343
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Nat Commun, 2020, 11(1): 2871. doi:10.1038/s41467-020-16675-xhttp://dx.doi.org/10.1038/s41467-020-16675-x
Liu C, Wang K, Gong X, Heeger A J. Chem Soc Rev, 2016, 45(17): 4825-4846. doi:10.1039/c5cs00650chttp://dx.doi.org/10.1039/c5cs00650c
Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J. Nanoscale, 2016, 8(26): 12990-12997. doi:10.1039/c6nr02902ghttp://dx.doi.org/10.1039/c6nr02902g
Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J. Nano Lett, 2017, 17(3): 1995-2002. doi:10.1021/acs.nanolett.6b05418http://dx.doi.org/10.1021/acs.nanolett.6b05418
Wang W, Du M, Zhang M, Miao J, Fang Y, Zhang F. Adv Opt Mater, 2018, 6(16): 1800249. doi:10.1002/adom.201800249http://dx.doi.org/10.1002/adom.201800249
Wang Cheng(王成), Zhang Chi(张弛), Chen Qi(陈琪), Chen Liwei(陈立桅). Acta Chimica Sinica(化学学报), 2021, 79(8): 1030-1036. doi:10.6023/a21040181http://dx.doi.org/10.6023/a21040181
Guo D, Yang L, Zhao J, Li J, He G, Yang D, Wang L, Vadim A, Ma D. Mater Horiz, 2021, 8(8): 2293-2302. doi:10.1039/d1mh00776ahttp://dx.doi.org/10.1039/d1mh00776a
Zhao Z, Liu M, Yang K, Xu C, Guan Y, Ma X, Wang J, Zhang F. Adv Funct Mater, 2021, 31: 2106009. doi:10.1002/adfm.202106009http://dx.doi.org/10.1002/adfm.202106009
Miao J, Zhang F, Lin Y, Wang W, Gao M, Li L, Zhang J, Zhan X. Adv Opt Mater, 2016, 4(11): 1711-1717. doi:10.1002/adom.201600387http://dx.doi.org/10.1002/adom.201600387
Miao J, Zhang F, Du M, Wang W, Fang Y. Adv Opt Mater, 2018, 6(8): 1800001. doi:10.1002/adom.201800001http://dx.doi.org/10.1002/adom.201800001
Zhao Z, Wang J, Miao J, Zhang F. Org Electron, 2019, 69: 354-360. doi:10.1016/j.orgel.2019.03.055http://dx.doi.org/10.1016/j.orgel.2019.03.055
Lan Z, Lei Y, Chan W K E, Chen S, Luo D, Zhu F. Sci Adv, 2020, 6(5): eaaw8065. doi:10.1126/sciadv.aaw8065http://dx.doi.org/10.1126/sciadv.aaw8065
Zhang Y, Liu H, Huang N, Wang Z. Phys Rev Appl, 2019, 12(5): 054005. doi:10.1103/physrevapplied.12.054005http://dx.doi.org/10.1103/physrevapplied.12.054005
Ji Z, Cen G, Su C, Liu Y, Zhao Z, Zhao C, Mai W. Adv Opt Mater, 2020, 8(23): 2001436. doi:10.1002/adom.202001436http://dx.doi.org/10.1002/adom.202001436
Wu Y-L, Fukuda K, Yokota T, Someya T. Adv Mater, 2019, 31(43): 1903687. doi:10.1002/adma.201903687http://dx.doi.org/10.1002/adma.201903687
Shi L, Song J, Zhang Y, Li G, Wang W, Hao Y, Wu Y, Cui Y. Nanotechnology, 2020, 31(31): 314001. doi:10.1088/1361-6528/ab87cahttp://dx.doi.org/10.1088/1361-6528/ab87ca
Wang J, Liu M, Chen J, Son J H, Jeong S Y, Xiao J, Chen L, Yang K, Zhao Z, Woo H Y, Zhang X, Zhang F. J Mater Chem C, 2021, doi: 10.1039/D1TC04524Ehttp://dx.doi.org/10.1039/D1TC04524E
Yao M, Jiang J, Xin D, Ma Y, Wei W, Zheng X, Shen L. Nano Lett, 2021, 21(9): 3947-3955. doi:10.1021/acs.nanolett.1c00700http://dx.doi.org/10.1021/acs.nanolett.1c00700
Lan Z, Lee M H, Zhu F. Adv Intell Syst, 2021, doi: 10.1002/aisy.202100167http://dx.doi.org/10.1002/aisy.202100167
Ji Z, Liu Y, Yao M, Zhang Z, Zhong J, Mai W. Adv Funct Mater, 2021, 31(37): 2104320. doi:10.1002/adfm.202104320http://dx.doi.org/10.1002/adfm.202104320
Wei Y, Chen H, Liu T, Wang S, Jiang Y, Song Y, Zhang J, Zhang X, Lu G, Huang F, Wei Z, Huang H. Adv Funct Mater, 2021, 31(52): 2106326. doi:10.1002/adfm.202106326http://dx.doi.org/10.1002/adfm.202106326
Kim J, So C, Kang M, Sim K M, Lim B, Chung D S. Mater Horiz, 2021, 8(1): 276-283. doi:10.1039/d0mh01588ahttp://dx.doi.org/10.1039/d0mh01588a
Zhao Z, Liu B, Xie C, Ma Y, Wang J, Liu M, Yang K, Xu Y, Zhang J, Li W, Shen L, Zhang F. Sci China Chem, 2021, 64: 1302-1309. doi:10.1007/s11426-021-1008-9http://dx.doi.org/10.1007/s11426-021-1008-9
Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L. Light Sci Appl, 2020, 9(1): 31. doi:10.1038/s41377-020-0264-5http://dx.doi.org/10.1038/s41377-020-0264-5
0
Views
276
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution