浏览全部资源
扫码关注微信
1.天津市分子光电科学重点实验室 天津大学理学院 天津 300072
2.天津大学分子聚集态科学研究院 天津 300072
3.青藏高原资源化学与生态环境保护国家民委重点实验室 青海民族大学 西宁 810007
4.天津大学-新加坡国立大学福州联合学院 天津大学国际校区 福州 350207
Published:20 April 2022,
Published Online:20 January 2022,
Received:30 October 2021,
Revised:09 December 2021,
移动端阅览
甄淳,李舒豫,张伊晗等.一种基于有机共晶的光控晶体管[J].高分子学报,2022,53(04):396-404.
Zhen Chun,Li Shu-yu,Zhang Yi-han,et al.Phototransistor Based on Organic Cocorystals[J].ACTA POLYMERICA SINICA,2022,53(04):396-404.
甄淳,李舒豫,张伊晗等.一种基于有机共晶的光控晶体管[J].高分子学报,2022,53(04):396-404. DOI: 10.11777/j.issn1000-3304.2021.21329.
Zhen Chun,Li Shu-yu,Zhang Yi-han,et al.Phototransistor Based on Organic Cocorystals[J].ACTA POLYMERICA SINICA,2022,53(04):396-404. DOI: 10.11777/j.issn1000-3304.2021.21329.
以9
10-二苯乙炔基蒽(BPEA)作为给体分子,均苯四甲酸二酰亚胺(PMD)作为受体分子,通过溶液法制备了一种新型的电荷转移共晶BPEA-PMD. 共晶结构中,给受体分子以2:1的摩尔比呈现混合堆积模式. 通过一系列的表征,发现了其独特的光电性质,BPEA-PMD共晶分子表现出红色荧光发射特性并且兼具P型传输性能,其空穴迁移率可达8.33×10
-2
cm
2
·V
-1
·s
-1
. 基于其优异的电学性能,制备了共晶光响应晶体管器件,其光响应度(
R
)为1.67×10
3
A·W
-1
,这证明了有机共晶在光电探测器方面的巨大应用潜力.
A novel charge transfer cocrystal BPEA-PMD was prepared by
solution method using 9
10-diphenylacetylene anthracene (BPEA) as donor molecule and pyromellitic diimide (PMD) as acceptor molecule. The D-A cocrystals show a mixed stacking mode with a molar ratio of 2:1. A series of spectral analyses prove that there is a charge transfer characteristic in the BPEA-PMD cocrystals
which narrows the band gap of the cocrystals and further makes the cocrystals system show excellent photoelectric properties. BPEA-PMD cocrystals exhibit red fluorescence emission
and the PL lifetime is 1.14 ns
showing a single exponential decay process
which indicates that the luminescence process of BPEA-PMD cocrystals is derived from only one excited state. In addition
BPEA-PMD cocrystals display p-type transport properties with hole mobility up to 8.33×10
-2
cm
2
·V
-1
·s
-1
. Based on its excellent electrical properties
photoresponsive transistors device was prepared. Under the illumination of 450 nm light
the source-drain current of the phototransistors based on BPEA-PMD increases significantly. Moreover
photosensitivity (
P
)
photoresponsivity (
R
)
and detectivity (
D
*
) are several key parameters for evaluating the photoelectric detection capability. The phototransistors for BPEA-PMD cocrystals demonstrate the
P
max
of 37.38
R
max
of 1.67×10
3
A·W
-1
and
D
*
max
of 2.06×10
13
Jones
which proves the great potential of the organic cocrystals in the application of photoelectric detectors.
有机共晶电荷转移红色荧光P型传输光响应
Organic cocrystalsCharge transferRed fluorescenceP-type transportPhotoresponse
Clark J, Lanzani G. Nat Photon, 2010, 4: 438-446. doi:10.1038/nphoton.2010.160http://dx.doi.org/10.1038/nphoton.2010.160
Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246-1260. doi:10.11777/j.issn1000-3304.2017.17127http://dx.doi.org/10.11777/j.issn1000-3304.2017.17127
Wang C, He K, Li J F, Chen X D. Smart Mat, 2021, 2: 252-262. doi:10.1002/smm2.1068http://dx.doi.org/10.1002/smm2.1068
Wang W B, Zhang F J, Du M D, Li L L, Zhang M, Wang K, Wang Y S, Hu B, Fang Y, Huang J S. Nano Lett, 2017, 17: 1995-2002. doi:10.1021/acs.nanolett.6b05418http://dx.doi.org/10.1021/acs.nanolett.6b05418
Deng X, Yu X H, Xiao J C, Zhang Q C. Aggregate, 2021, 2: e35. doi:10.1002/agt2.35http://dx.doi.org/10.1002/agt2.35
Ye H Q, Liu G F, Liu S, Casanova D, Ye X, Tao X T, Zhang Q C, Xiong Q H. Angew Chem Int Ed, 2018, 57: 1928-1932. doi:10.1002/anie.201712104http://dx.doi.org/10.1002/anie.201712104
Zhu W G, Zheng R H, Zhen Y G, Yu Z Y, Dong H L, Fu H B, Shi Q, W P. J Am Chem Soc, 2015, 137: 11038-11046. doi:10.1021/jacs.5b05586http://dx.doi.org/10.1021/jacs.5b05586
Zhu W G, Zhu L Y, Zou Y, Wu Y S, Zhen Y G, Dong H L, Fu H B, Wei Z X, Shi Q, Hu W P. Adv Mater, 2016, 28: 5954-5962. doi:10.1002/adma.201600280http://dx.doi.org/10.1002/adma.201600280
Park S K, Cho I, Gierschner G, Kim J H, Kim J H, Kwon J E, Kwon O K, Whang D R, Park J H, An B K, Park S Y. Angew Chem Int Ed, 2016, 55: 203-207. doi:10.1002/anie.201508210http://dx.doi.org/10.1002/anie.201508210
Wang Z R, Yu F, Chen W Q, Wang J F, Liu J Y, Yao C J, Zhao J F, Dong H L, Hu W P, Zhang Q C. Angew Chem Int Ed, 2020, 59: 17580-17586. doi:10.1002/anie.202005933http://dx.doi.org/10.1002/anie.202005933
Sun Y Q, Lei Y L, Dong H L, Zhen Y G, Hu W P. J Am Chem Soc, 2018, 140: 6186-6189. doi:10.1021/jacs.8b00772http://dx.doi.org/10.1021/jacs.8b00772
Liu G F, Liu J, Ye X, Nie L, Gu P Y, Tao X T, Zhang Q C. Angew Chem Int Ed, 2017, 56: 198-202. doi:10.1002/anie.201609667http://dx.doi.org/10.1002/anie.201609667
Yu P P, Li Y, Zhao H J, Zhu L Y, Wang Y S, Xu W, Zhen Y G, Wang X R, Dong H L, Zhu D B, Hu W P. Small, 2021, 17: 2006574. doi:10.1002/smll.202006574http://dx.doi.org/10.1002/smll.202006574
Qin Y K, Cheng C L, Geng H, Wang C, Hu W P, Xu W, Shuai Z G, Zhu D B. Phys Chem Chem Phys, 2016, 18: 14094-14103. doi:10.1039/c6cp01509chttp://dx.doi.org/10.1039/c6cp01509c
Zhang J, Jin J Q, Xu H X, Zhang Q C, Huang W. J Mater Chem C, 2018, 6: 3485-3498. doi:10.1039/c7tc04389ahttp://dx.doi.org/10.1039/c7tc04389a
Huang Y J, Wang Z R, Chen Z, Zhang Q C. Angew Chem Int Ed, 2019, 58: 9696-9711. doi:10.1002/anie.201900501http://dx.doi.org/10.1002/anie.201900501
Park S K, Varghese S, Kim J H, Yoon S J, Kwon O K, An B K, Gierschner J, Park S Y. J Am Chem Soc, 2013, 135: 4757-4764. doi:10.1021/ja312197bhttp://dx.doi.org/10.1021/ja312197b
Park S K, Kim J H, Ohto T, Yamada R, Jones A O F, Whang D R, Cho I, Oh S, Hong S H, Kwon J E, Kim J H, Olivier Y, Fischer R, Resel R, Gierschner J, Tada H, Park S Y. Adv Mater, 2017, 29: 1701346. doi:10.1002/adma.201701346http://dx.doi.org/10.1002/adma.201701346
Zhang H T, Jiang L, Zhen Y G, Zhang J, Han G C, Zhang X T, Fu X L, Yi Y P, Xu W, Dong H L, Chen W, Hu W P, Zhu D B. Adv Electron Mater, 2016, 2: 1500423. doi:10.1002/aelm.201500423http://dx.doi.org/10.1002/aelm.201500423
Xu B B, Li Z, Chang S Q, Li C N, Ren S Q. ACS Appl Electron Mater, 2019, 1(9): 1735-1739. doi:10.1021/acsaelm.9b00337http://dx.doi.org/10.1021/acsaelm.9b00337
Wu H N, Sun Y J, Sun L J, Wang L W, Zhang X T, Hu W P. Chin Chem Lett, 2021, 32: 3007-3010. doi:10.1016/j.cclet.2021.03.045http://dx.doi.org/10.1016/j.cclet.2021.03.045
Liang Y Y, Qin Y K, Chen J, Xing W L, Zou Y, Sun Y M, Xu W, Zhu D B. Adv Sci, 2020, 7: 1902456. doi:10.1002/advs.201902456http://dx.doi.org/10.1002/advs.201902456
Fan C C, Zoombelt A P, Jiang H, Fu W F, Wu J K, Yuan W T, Wang Y, Li H Y, Chen H Z, Bao Z N. Adv Mater, 2013, 25(40): 5762-5766. doi:10.1002/adma.201302605http://dx.doi.org/10.1002/adma.201302605
Sun L J, Wang Y, Yang F X, Zhang X T, Hu W P. Adv Mater, 2019, 31: 1902328. doi:10.1002/adma.201902328http://dx.doi.org/10.1002/adma.201902328
Wakahara T, Nagaoka K, Nakagawa A, Hirata C, Matsushita Y, Miyazawa K, Ito O, Wada Y, Takagi M, Ishimoto T, Tachikawa M, Tsukagoshi K. ACS Appl Mater Interfaces, 2020, 12(2): 2878-2883. doi:10.1021/acsami.9b18784http://dx.doi.org/10.1021/acsami.9b18784
Wang Z R, Yu F, Xie J, Zhao J F, Zou Y, Wang Z P, Zhang Q C. Chem Eur J, 2020, 26: 3578-3585. doi:10.1002/chem.201904901http://dx.doi.org/10.1002/chem.201904901
Wang Y, Wu H, Zhu W G, Zhang X T, Liu Z Y, Wu Y S, Feng C F, Dang Y F, Dong H L, Fu H B, Hu W P. Angew Chem Int Ed, 2021, 60: 6344-6350. doi:10.1002/anie.202015326http://dx.doi.org/10.1002/anie.202015326
Zhu W G, Yi Y P, Zhen Y G, Hu W P. Small, 2015, 11(18): 2150-2156. doi:10.1002/smll.201402330http://dx.doi.org/10.1002/smll.201402330
Huang Y J, Wang Z R, Chen Z, Zhang Q C. Angew Chem Int Ed, 2019, 58: 9696-9711. doi:10.1002/anie.201900501http://dx.doi.org/10.1002/anie.201900501
Geng H, Zheng X Y, Shuai Z G, Zhu L Y, Yi Y P. Adv Mater, 2015, 27: 1443-1449. doi:10.1002/adma.201404412http://dx.doi.org/10.1002/adma.201404412
Jin J Q, Wu S Y, Ma Y D, Dong C Q, Wang W, Liu X T, Xu H X, Long G K, Zhang M T, Zhang J, Huang W. ACS Appl Mater Interfaces, 2020, 12: 19718-19726. doi:10.1021/acsami.9b23590http://dx.doi.org/10.1021/acsami.9b23590
Liu Y, Hu H P, Xu L, Qiu B, Liang J, Ding F, Wang K, Chu M M, Zhang W, Ma M, Chen B, Yang X Z, Zhao Y S. Angew Chem Int Ed, 2020, 59: 4456-4463. doi:10.1002/anie.201913441http://dx.doi.org/10.1002/anie.201913441
Wang W, Luo L X, Sheng P, Zhang J, Zhang Q C. Chem Eur J, 2020, 26: 1-28. doi:10.1002/chem.202002640http://dx.doi.org/10.1002/chem.202002640
SagadeA A, Rao K V, George S J, Dattac A, Kulkarni G U. Chem Commun, 2013, 49: 5847-5849. doi:10.1039/c3cc41841chttp://dx.doi.org/10.1039/c3cc41841c
Tao J W, Liu D, Qin Z S, Shao B, Jing J B, Li H X, Dong H L, Xu B, Tian W J. Adv Mater, 2020, 32: 1907791. doi:10.1002/adma.201907791http://dx.doi.org/10.1002/adma.201907791
Zhu W G, Zheng R H, Fu X L, Fu H B, Shi Q, Zhen Y G, Dong H L, Hu W P. Angew Chem, 2015, 127: 6889-6893. doi:10.1002/ange.201501414http://dx.doi.org/10.1002/ange.201501414
Zhang Y W, Zhang D D, Huang T Y, Gillett A J, Liu Y, Hu D P, Cui L S, Bin Z Y, Li G M, Wei J B, Duan L. Angew Chem Int Ed, 2021, 60: 20498-20503. doi:10.1002/anie.202107848http://dx.doi.org/10.1002/anie.202107848
Liu Y Z, Lei Y X, Li F, Chen J X, Liu M C, Huang X B, Gao W X, Wu H Y, Ding J C, Cheng Y X. J Mater Chem C, 2016, 4: 2862-2870. doi:10.1039/c5tc02932ehttp://dx.doi.org/10.1039/c5tc02932e
Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Adv Mater, 2013, 25: 4267-4295. doi:10.1002/adma.201204979http://dx.doi.org/10.1002/adma.201204979
0
Views
181
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution