浏览全部资源
扫码关注微信
1.北京分子科学国家研究中心 中国科学院化学研究所 有机固体院重点实验室 北京 100190
2.中国科学院大学 北京 100049
Yun-long Guo, E-mail: guoyunlong@iccas.ac.cn
Published:20 April 2022,
Published Online:19 January 2022,
Received:01 November 2021,
Revised:17 December 2021,
移动端阅览
秦铭聪,李清源,张帆等.基于窄带系DPP类聚合物的高性能近红外有机光探测器件[J].高分子学报,2022,53(04):405-413.
Qin Ming-cong,Li Qing-yuan,Zhang Fan,et al.High Performance Near-infrared Organic Photodetectors Based on Narrow-bandgap Diketopyrrolopyrrole-based Polymer[J].ACTA POLYMERICA SINICA,2022,53(04):405-413.
秦铭聪,李清源,张帆等.基于窄带系DPP类聚合物的高性能近红外有机光探测器件[J].高分子学报,2022,53(04):405-413. DOI: 10.11777/j.issn1000-3304.2021.21334.
Qin Ming-cong,Li Qing-yuan,Zhang Fan,et al.High Performance Near-infrared Organic Photodetectors Based on Narrow-bandgap Diketopyrrolopyrrole-based Polymer[J].ACTA POLYMERICA SINICA,2022,53(04):405-413. DOI: 10.11777/j.issn1000-3304.2021.21334.
采用窄带隙给体材料DPPDTT和富勒烯衍生物受体PCBM共混作为活性层,制备了具有高激子分离和电荷传输效率的近红外有机光探测器件,并进一步采用窄带隙受体Y6代替PCBM制备一种“双窄带隙吸收”的异质结结构,在近红外区域的吸收叠加有效地增强了器件光响应能力. 最后,通过采用厚活性层、插入阻挡层以及制备倒置结构等方法,将器件的暗电流进一步降低1个数量级. 在850 nm,0.53 μW·cm
-2
的近红外光照射下,比探测率提升至8.28×10
11
Jones. 同时,随着测量频率的提升,器件响应的速度和强度几乎没有发生变化,在120帧/秒的条件下仍表现出很好的循环稳定性. 研究结果表明该类器件在光电通信、近红外成像以及医疗生理检测等方向具有良好的应用前景.
High-performance near-infrared (NIR) organic photodetectors (OPDs) have widespread application prospects in artificial vision
biological imaging
flexible wearable electronic devices. Ascribed to high absorption coefficient and charge-carrier mobility
the narrow-bandgap polymer DPPDTT displayed a great potential for NIR OPDs. However
due to the nature of narrow bandgap and strong intermolecular interactions
the DPPDTT-based OPDs exhibit a low detectivity (
D
*
(
λ
)). Here
we introduced PCBM as the acceptor material to construct bulk-heterojunction photodiodes
which improved the efficiency of exciton separation and charge transfer
so that the
D
*
(
λ
) can be simultaneously enhanced. Moreover
when the narrow-bandgap acceptor Y6 is utilized instead of PCBM to afford a "double narrow-bandgap absorption" heterojunction structure
the superposition of absorption in the near-infrared region could effectively enhance the light response capability of devices. Finally
by adopting the inverted structure and inserting barrier layers
the dark current is further reduced by one order of magnitude
and the
D
*
(λ)
is increased to 8.28×10
11
Jones under 850 nm at a light irradiation of 0.53 μW·cm
-2
. With the increase of the measurement frequency
the response spe
ed and the
D
*
(
λ
) of the device were kept at same value
and it still showed good cycle stability under the condition of 120 frames per second. Thus
the above results confirm that this type of device will show promising applications in photoelectric communication
NIR imaging
physiological testing
and so forth.
窄带系DPP类聚合物高性能二极管近红外有机光探测器
Narrow-bandgap DPP-based polymerHigh performanceDiodeNear-infrared organic photodetectors
Simone G, Rasi D D C, Vries X D, Heintges G H L, Meskers S C J, Janssen R A J, Gelinck G H. Adv Mater, 2018, 30(51): e1804678. doi:10.1002/adma.201804678http://dx.doi.org/10.1002/adma.201804678
Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins T I, Galambos L, Smith R, Harris J S, Sher A, Palanker D. Nat Photonics, 2012, 6(6): 391-397. doi:10.1038/nphoton.2012.104http://dx.doi.org/10.1038/nphoton.2012.104
Wu Z, Zhai Y, Yao W, Eedugurala N, Zhang S, Huang L, Gu X, Azoulay J D, Ng T N. Adv Funct Mater, 2018, 28(50): 1805738. doi:10.1002/adfm.201805738http://dx.doi.org/10.1002/adfm.201805738
Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L. Light Sci Appl, 2020, 9(31): 1-8. doi:10.1038/s41377-020-0264-5http://dx.doi.org/10.1038/s41377-020-0264-5
Lochner C M, Khan Y, Pierre A, Arias A C. Nat Commun, 2014, 5(1): 5745. doi:10.1038/ncomms6745http://dx.doi.org/10.1038/ncomms6745
Park S, Fukuda K, Wang M, Lee C, Yokota T, Jin H, Jinno H, Kimura H, Zalar P, Matsuhisa N, Umezu S, Bazan G C, Someya T. Adv Mater, 2018, 30(34): e1802359. doi:10.1002/adma.201870252http://dx.doi.org/10.1002/adma.201870252
Bilgaiyan A, Elsamnah F, Ishidai H, Shim C H, Misran M A B, Adachi C, Hattori R. ACS Appl Electron Mater, 2020, 2(5): 1280-1288. doi:10.1021/acsaelm.0c00082http://dx.doi.org/10.1021/acsaelm.0c00082
Siegmund B, Mischok A, Benduhn J, Zeika O, Ullbrich S, Nehm F, Bȍhm M, Spoltore D, Frȍb H, Kȍrner C, Leo K, Vandewal K. Nat Commun, 2017, 8: 15421. doi:10.1038/ncomms15421http://dx.doi.org/10.1038/ncomms15421
Tang Z, Ma Z, Sánchez-Díaz A, Ullbrich S, Liu Y, Siegmund B, Mischok A, Leo K, Campoy-Quiles M, Li W, Vandewal K. Adv Mater, 2017, 29(33): 1702184. doi:10.1002/adma.201702184http://dx.doi.org/10.1002/adma.201702184
Li Q, Guo Y, Liu Y. Chem Mater, 2019, 31(17): 6359-6379. doi:10.1021/acs.chemmater.9b00966http://dx.doi.org/10.1021/acs.chemmater.9b00966
Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Adv Mater, 2013, 25(31): 4267-4295. doi:10.1002/adma.201204979http://dx.doi.org/10.1002/adma.201204979
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥), Ma Yuguang(马於光), Hou Jinahui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽), Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yingfang(李永舫), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Yang K, Wang J, Zhao Z, Zhou Z, Liu M, Zhang J, He Z, Zhang F. ACS Appl Mater Inter, 2021, 13(18): 21565-21572. doi:10.1021/acsami.1c06486http://dx.doi.org/10.1021/acsami.1c06486
Yang K, Zhao Z, Liu M, Zhou Z, Wang K, Ma X, Wang J, He Z, Zhang F. Chem Eng J, 2022, 427: 131802. doi:10.1016/j.cej.2021.131802http://dx.doi.org/10.1016/j.cej.2021.131802
Yang C M, Tsai P Y, Horng S F, Lee K C, Tzeng S R, Meng H F, Shy J T, Shu C F. Appl Phys Lett, 2008, 92(8): 083504. doi:10.1063/1.2839397http://dx.doi.org/10.1063/1.2839397
Arca F, Sramek M, Tedde S F, Lugli P, Hayden O. IEEE J Quantum Elect, 2013, 49(12): 1016-1025. doi:10.1109/jqe.2013.2285158http://dx.doi.org/10.1109/jqe.2013.2285158
Mischok A, Siegmund B, Ghosh D S, Benduhn J, Spoltore D, Böhm M, Fröb H, Körner C, Leo K. ACS Photonics, 2017, 4(9): 2228-2234. doi:10.1021/acsphotonics.7b00427http://dx.doi.org/10.1021/acsphotonics.7b00427
Yazmaciyan A, Meredith P, Armin A. Adv Opt Mater, 2019, 7(8): 1801543. doi:10.1002/adom.201801543http://dx.doi.org/10.1002/adom.201801543
Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat Commun, 2015, 6(1): 1-8. doi:10.1038/ncomms7343http://dx.doi.org/10.1038/ncomms7343
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Nat Commun, 2020, 11(1): 2871. doi:10.1038/s41467-020-16675-xhttp://dx.doi.org/10.1038/s41467-020-16675-x
Li W, Xu Y, Meng X, Xiao Z, Li R, Jiang L, Cui L, Zheng M, Liu C, Ding L, Lin Q. Adv Funct Mater, 2019, 29(20): 1808948. doi:10.1002/adfm.201808948http://dx.doi.org/10.1002/adfm.201808948
Lan Z, Lei Y, Chan W K E, Chen S, Luo D, Zhu F. Sci Adv, 2020, 6(5): eaaw8065. doi:10.1126/sciadv.aaw8065http://dx.doi.org/10.1126/sciadv.aaw8065
Yi Z, Wang S, Liu Y. Adv Mater, 2015, 27(24): 3589-3606. doi:10.1002/adma.201500401http://dx.doi.org/10.1002/adma.201500401
Li J, Zhao Y, Tan H S, Guo Y, Di C A, Yu G, Liu Y, Lin M, Lim S H, Zhou Y, Su H, Ong B S. Sci Rep, 2012, 2: 754. doi:10.1038/srep00754http://dx.doi.org/10.1038/srep00754
Liu S, You P, Li J, Li J, Lee C S, Ong B S, Surya C, Yan F. Energ Environ Sci, 2015, 8(5): 1463-1470. doi:10.1039/c5ee00090dhttp://dx.doi.org/10.1039/c5ee00090d
Sun Y n, Lv Y, Han P, Li K, Liang Y, Duan Y, Zhang H, Geng H, Zhang Y, Fu H, Liao Y. Sol Energy Mater Sol Cells, 2020, 215: 110684. doi:10.1016/j.solmat.2020.110684http://dx.doi.org/10.1016/j.solmat.2020.110684
Li Q, Ran Y, Shi W, Qin M, Sun Y, Kuang J, Wang H, Chen H, Guo Y, Liu Y. Appl Mater Today, 2021, 22: 100899. doi:10.1016/j.apmt.2020.100899http://dx.doi.org/10.1016/j.apmt.2020.100899
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3(4): 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Simone G, Dyson M J, Weijtens C H L, Meskers S C J, Coehoorn R, Janssen R A J, Gelinck G H. Adv Opt Mater, 2019, 8(1): 1901568. doi:10.1002/adom.201901568http://dx.doi.org/10.1002/adom.201901568
Zhong Wenkai(钟文楷), Xie Ruihao(谢锐浩), Ying Lei(应磊), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2018, (2): 217-222. doi:10.11777/j.issn1000-3304.2018.17242http://dx.doi.org/10.11777/j.issn1000-3304.2018.17242
Gao Shijia(高诗佳), Wang Xin(王鑫), Zhang Yulin(张育林), Zhang Sai(张赛), Qiao Wenqiang(乔文强), Wang Zhiyuan(王植源). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 338-345. doi:10.11777/j.issn1000-3304.2019.19206http://dx.doi.org/10.11777/j.issn1000-3304.2019.19206
Geng Yue(耿悦), Gao Hanfei(高寒飞), Wu Yuchen(吴雨辰), Jiang Lei(江雷). Acta Polymerica Sinica(高分子学报), 2020, 51(5): 421-433. doi:10.11777/j.issn1000-3304.2020.19218http://dx.doi.org/10.11777/j.issn1000-3304.2020.19218
Xia K, Li Y, Wang Y, Portilla L, Pecunia V. Adv Opt Mater, 2020, 8(8): 1902056. doi:10.1002/adom.201902056http://dx.doi.org/10.1002/adom.201902056
Han J, Qi J, Zheng X, Wang Y, Hu L, Guo C, Wang Y, Li Y, Ma D, Qiao W, Wang Z Y. J Mater Chem C, 2017, 5(1): 159-165. doi:10.1039/c6tc05031jhttp://dx.doi.org/10.1039/c6tc05031j
Armin A, Hambsch M, Kim I K, Burn P L, Meredith P, Namdas E B. Laser Photonics Rev, 2014, 8(6): 924-932. doi:10.1002/lpor.201400081http://dx.doi.org/10.1002/lpor.201400081
Strobel N, Seiberlich M, Rodlmeier T, Lemmer U, Hernandez-Sosa G. ACS Appl Mater Interfaces, 2018, 10(49): 42733-42739. doi:10.1021/acsami.8b16018http://dx.doi.org/10.1021/acsami.8b16018
Liu X, Lin Y, Liao Y, Wu J, Zheng Y. J Mater Chem C, 2018, 6(14): 3499-3513. doi:10.1039/c7tc05042ahttp://dx.doi.org/10.1039/c7tc05042a
0
Views
236
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution