Yang Chen,Li Xiu-ting,Dong Jie,et al.Preparation of High Performance Polyimide Based on Metal Coordination Bond[J].ACTA POLYMERICA SINICA,2022,53(06):663-672.
Yang Chen,Li Xiu-ting,Dong Jie,et al.Preparation of High Performance Polyimide Based on Metal Coordination Bond[J].ACTA POLYMERICA SINICA,2022,53(06):663-672. DOI: 10.11777/j.issn1000-3304.2021.21336.
Preparation of High Performance Polyimide Based on Metal Coordination Bond
Soluble polyimide containing metal coordination crosslinking network was synthesized through molecular structure design. Based on the coordination crosslinking between Cu
2+
and the lateral carboxyl group of polyimide
the mobility of polyimide chain in solid state was limited and the
T
g
of the material was significantly improved. The
T
g
of the original polyimide is about 320 ℃
while the
T
g
of coordination crosslinked polyimide PI-Cu50% can reach about 362 ℃. After coordination with Cu
2+
the initial "push-pull" electronic mode of polyimide is destroyed
the existing state of electrons in the main chain was changed
and the fluorescence intensity of polyimide was weakened. Meanwhile
Cu
2+
has an aspherical symmetrical electron cloud structure
resulting in additional crystal field stability energy (CFSE) and strong Jahn teller effect (JTE) when Cu
2+
coordinates with organic ligands
so that the coordination bond can exist stably in organic solvents
After the introduction of copper chloride
crosslinking network based on Cu
2+
coordination was formed in the molecular structure of polyimide which greatly improves the solvent corrosion resistance of the films. The original polyimide film can be completely dissolved after soaking in strong polar solvents such as
N
N
-dimethylformamide (DMF)
N
-methylacetamide (DMAc) and
N
-methylpyrrolidone (NMP) and standing at room temperature for two days
while the mass residue rate of the coordination crosslinked polyimide film PI-Cu50% can still be as high as 80% after soaking in strong polar solvents such as DMF and DMAc at room temperature for 48 h. Due to the decarboxylation crosslinking reaction of carboxy
l group at about 400 ℃
the
T
d5
of polyimide containing carboxyl group is low
and the thermal stability of carboxyl group was significantly improved when coordinated with Cu
2+
so the
T
d5
of polyimide was improved. Moreover
the introduction of metal ion coordination into the polyimide molecular structure also improved its mechanical properties
and the tensile strength of film increased from 93 MPa to 128 MPa. This study provides a new way to develop high-performance soluble polyimide materials.
Ding Mengxian(丁孟贤). Polyimide: Relationship between Chemistry, Structure and Properties and Materials(聚酰亚胺: 化学、结构与性能的关系及材料). 2nd ed(第二版). Beijing(北京): Science Press(科学出版社), 2012. 1-4. doi:10.1109/icmse.2012.6414309http://dx.doi.org/10.1109/icmse.2012.6414309
Srinivas S, Graham M, Brink M H, Gardner S, Davis R M, Mcgrath J E, Wilkes G L. Polym Eng Sci, 1996, 36(14): 1928-1940. doi:10.1002/pen.10589http://dx.doi.org/10.1002/pen.10589
Dong J, Yin C Q, Luo W Q, Zhang Q H. J Mater Sci, 2013, 48(21): 7594-7602. doi:10.1007/s10853-013-7576-2http://dx.doi.org/10.1007/s10853-013-7576-2
Choi H, Chung I S, Hong K, Park C E, Kim S Y. Polymer, 2008, 49: 2644-2649. doi:10.1016/j.polymer.2008.04.019http://dx.doi.org/10.1016/j.polymer.2008.04.019
Montarnal D, Capelot M, Tournilhac F, Leibler L. Science, 2011, 334(6058): 965-968. doi:10.1126/science.1212648http://dx.doi.org/10.1126/science.1212648
Zou Z A, Zhu C P, Li Y, Lei X F, Zhang W, Xiao J L. Sci Adv, 2018, 4(2): eaaq0508. doi:10.1126/sciadv.aaq0508http://dx.doi.org/10.1126/sciadv.aaq0508
Zou W K, Dong J T, Luo Y W, Zhao Q, Xie T. Adv Mater, 2017, 29: 1606100. doi:10.1002/adma.201606100http://dx.doi.org/10.1002/adma.201606100
Chen Xingxing(陈兴幸), Zhong Qianyun(钟倩云), Wang Shujuan(王淑娟), Wu Youshen(吴宥伸), Tan Jidong(谭继东), Lei Hengxin(雷恒鑫), Huang Shaoyong(黄绍永), Zhang Yanfeng(张彦峰). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 469-484. doi:10.11777/j.issn1000-3304.2019.18277http://dx.doi.org/10.11777/j.issn1000-3304.2019.18277
Luo Longbo(罗龙波), Ye Xinhe(叶信合), Yi Jiang(易江), Li Ke(李科), Liu Xiangyang(刘向阳). Acta Polymerica Sinica(高分子学报), 2021, 52(4): 363-370. doi:10.11777/j.issn1000-3304.2020.20222http://dx.doi.org/10.11777/j.issn1000-3304.2020.20222
Yin Q, Hu Y Y, Qin Y T, Cheng Z, Luo L B, Liu X Y. Compos B Eng, 2020, 208: 108566. doi:10.1016/j.compositesb.2020.108566http://dx.doi.org/10.1016/j.compositesb.2020.108566
Peng X W, Xu W H, Chen L L, Ding Y C, Chen S L, Wang X Y, Hou H Q. J Mater Chem C, 2016, 4: 6452-6456. doi:10.1039/c6tc01304jhttp://dx.doi.org/10.1039/c6tc01304j
Luo X F, Wang Z G, Wu S S, Fang W X, Jin J. J Membr Sci, 2020, 621: 119002. doi:10.1016/j.memsci.2020.119002http://dx.doi.org/10.1016/j.memsci.2020.119002
Zhan S N, Wang X H, Sun J Q. Macromol Rapid Commun, 2020, 41: e2000097. doi:10.1002/marc.202000097http://dx.doi.org/10.1002/marc.202000097
Liang N Q, Fujiwara E, Nara M, Ishige R, Ando S. ACS Appl Polym Mater, 2021, 3: 3911-3921. doi:10.1021/acsapm.1c00474http://dx.doi.org/10.1021/acsapm.1c00474
Chang G J, Wang C, Du M Q, Liu S Y, Yang L. Chem Commun, 2018, 54: 2906-2909. doi:10.1039/c7cc08510ahttp://dx.doi.org/10.1039/c7cc08510a
Zhang C L, Li P, Cao B. J Membr Sci, 2017, 528(15): 206-216. doi:10.1016/j.memsci.2017.01.008http://dx.doi.org/10.1016/j.memsci.2017.01.008
Guan Y, Wang C B, Wang D M, Dang G D, Chen C H, Zhou H W, Zhao X G. Polymer, 2015, 62: 1-10. doi:10.1016/j.polymer.2015.02.009http://dx.doi.org/10.1016/j.polymer.2015.02.009
Preparation and Research of Polyurethane Based Anti-icing Coating Based on Different Young's Modulus
Preparation and Properties of Composite Proton Exchange Membranes from Tröger's Base-based Polyimides/Polybenzimidazoles for Fuel Cells Operating in a Wide Temperature Range
Preparation and Performance of Thermally Rearranged Gas Separation Membranes Containing Tetraarylimidazole Structure
Preparation, Processing and Thermal Properties of Naphthaleneethynyl-terminated Silica-containing Polyimides
Related Author
Wei Song
Feng-ying Li
Ding-jun Zhang
Lei Chen
Hui-di Zhou
Jian-min Chen
Jian-ming Zhong
Jun-ming Dai
Related Institution
Research Center of Materials and Optoelectronics, University of Chinese Academy of Sciences
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
State Key Laboratory of Advanced Processing and Reuse of Non-Ferrous Metals, Lanzhou University of Technology
School of Chemical Engineering, University of Chinese Academy of Sciences
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences