浏览全部资源
扫码关注微信
华南理工大学高分子光电材料与器件研究所 发光材料与器件国家重点实验室 广州 510640
Zhang Kai, E-mail: mszhangk@scut.edu.cn
Huang Fei, E-mail: msfhuang@scut.edu.cn
Published:20 April 2022,
Published Online:28 January 2022,
Received:04 November 2021,
Revised:29 December 2021,
移动端阅览
解博名,张凯,李静雯等.通过控制陷阱分布实现高灵敏度窄带近红外响应有机光探测器[J].高分子学报,2022,53(04):414-423.
Xie Bo-ming,Zhang Kai,Li Jing-wen,et al.High-sensitivity Visible-blind Near-infrared Narrowband Organic Photodetectors Realized by Controlling Trap Distribution[J].ACTA POLYMERICA SINICA,2022,53(04):414-423.
解博名,张凯,李静雯等.通过控制陷阱分布实现高灵敏度窄带近红外响应有机光探测器[J].高分子学报,2022,53(04):414-423. DOI: 10.11777/j.issn1000-3304.2021.21339.
Xie Bo-ming,Zhang Kai,Li Jing-wen,et al.High-sensitivity Visible-blind Near-infrared Narrowband Organic Photodetectors Realized by Controlling Trap Distribution[J].ACTA POLYMERICA SINICA,2022,53(04):414-423. DOI: 10.11777/j.issn1000-3304.2021.21339.
近红外(NIR)窄带光电探测在机器视觉、医学检测、智能通信等领域具有重要应用. 本文提出了一种基于激子解离窄化机制的改进型层级器件结构,以实现响应峰值为940 nm的近红外窄带有机光电探测器(OPD). 系统研究表明,通过调节器件内部的陷阱态密度分布,可以有效地提高窄带探测器的外量子效率(EQE)峰值. 最终,基于双激子耗散层结构的器件在940 nm处达到了接近60%的峰值EQE,半峰宽为79 nm,峰值比探测率为2.3×10
13
Jones. 所构筑的可见盲-近红外OPD对940 nm波段的辐射具有选择性响应,可自主屏蔽环境光干扰. 此外,基于该优化的器件结构制备了柔性窄带OPD,并在反射模式下利用光容积描记技术成功地实现了无创实时心率监测,
证明了这种器件结构对于实现高性能窄带光电探测功能的适用性.
Narrowband photodetectors
which only respond to the spectral bands of interest but not to other spectral ranges
are widely used in biological sensors
medical monitoring
intelligent communication and other fields. Recent developments in artificial intelligence and wearable electronic devices have fostered a growing demand for visible-blind near-infrared (NIR) narrowband photodetectors. Herein
a novel hierarchical device structure based on the exciton dissociation narrowing (EDN) mechanism is proposed to realize NIR narrowband organic photodetectors (OPDs) with a response peak at 940 nm. Compared with traditional EDN type narrowband OPDs
the new device has a significantly higher peak external quantum efficiency (EQE) at 940 nm. The transient photocurrent measurement results show that the differences in device performance arise from diversity in the dynamics of the carrier trapping and de-trapping processes. Impedance analysis shows that the central trap energy levels of the two devices are located at different trap depths. Deep Gaussian trap density of states distributions cause unfavorable space-charge effects
c
ounteract the internal electric field
and increase the recombination loss
resulting in a significant difference in the EQE of the two devices. The visible-blind NIR OPD with optimized device structure can effectively resist the interference of ambient light
in addition
the sensitivity of the narrowband OPD in the NIR window at 940 nm has been enhanced by trap density of states distribution control. Therefore
it has a strong detection ability for weak infrared radiation. We also fabricated a flexible photodetector based on the optimized device structure with a sensitive area of 1.152 cm
2
. The device was attached to the surface of human skin
and the noninvasive real-time monitoring of human heart-rate was successfully realized by the reflective PPG technology with a flexible narrowband photodetector for the first time
demonstrating the superiority of this new structure in making high performances narrowband NIR OPDs for practical application.
近红外态密度窄带光电探测器柔性传感器
Near-infraredDensity of statesNarrowband photodetectorsFlexible sensors
Strobel N, Droseros N, Kontges W, Seiberlich M, Pietsch M, Schlisske S, Lindheimer F, Schroder R R, Lemmer U, Pfannmoller M, Banerji N, Hernandez-Sosa G. Adv Mater, 2020, 32(12): e1908258. doi:10.1002/adma.201908258http://dx.doi.org/10.1002/adma.201908258
Yoon S, Sim K M, Chung D S. J Mater Chem C, 2018, 6(48): 13084-13100. doi:10.1039/c8tc04371jhttp://dx.doi.org/10.1039/c8tc04371j
Chow P C Y, Someya T. Adv Mater, 2020, 32(15): e1902045. doi:10.1002/adma.201902045http://dx.doi.org/10.1002/adma.201902045
Fuentes-Hernandez C, Chou W F, Khan T M, Diniz L, Lukens J, Larrain F A, Rodriguez-Toro V A, Kippelen B. Science, 2020, 370(6517): 698-701. doi:10.1126/science.aba2624http://dx.doi.org/10.1126/science.aba2624
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Nat Commun, 2020, 11(1): 2871. doi:10.1038/s41467-020-16675-xhttp://dx.doi.org/10.1038/s41467-020-16675-x
Lan Z, Lau Y S, Wang Y, Xiao Z, Ding L, Luo D, Zhu F. Adv Opt Mater, 2020, 8(1): 2001388. doi:10.1002/adom.202001388http://dx.doi.org/10.1002/adom.202001388
Kim J, Yoon S, Sim K M, Chung D S. J Mater Chem C, 2019, 7(16): 4770-4777. doi:10.1039/c9tc00722ahttp://dx.doi.org/10.1039/c9tc00722a
Xie B, Chen Z, Ying L, Huang F, Cao Y. InfoMat, 2020, 2(1): 57-91. doi:10.1002/inf2.12063http://dx.doi.org/10.1002/inf2.12063
Lv L, Dang W, Wu X, Chen H, Huang H. Macromolecules, 2020, 53(23): 10636-10643. doi:10.1021/acs.macromol.0c01988http://dx.doi.org/10.1021/acs.macromol.0c01988
Zhong Wenkai(钟文楷), Xie Ruihao(谢锐浩), Ying Lei(应磊), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2018, (2):217-222. doi:10.11777/j.issn1000-3304.2018.17242http://dx.doi.org/10.11777/j.issn1000-3304.2018.17242
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥), Ma Yuguang(马於光), Hou Jianhui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽), Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yongfang(李永舫), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Zhong Y, Sisto T J, Zhang B, Miyata K, Zhu X Y, Steigerwald M L, Ng F, Nuckolls C. J Am Chem Soc, 2017, 139(16): 5644-5647. doi:10.1021/jacs.6b13089http://dx.doi.org/10.1021/jacs.6b13089
Kang J, Kim J, Ham H, Ahn H, Lim S Y, Kim H M, Kang I N, Jung I H. Adv Opt Mater, 2020, 8(23): 2001038. doi:10.1002/adom.202001038http://dx.doi.org/10.1002/adom.202001038
Xia K, Li Y, Wang Y, Portilla L, Pecunia V. Adv Opt Mater, 2020, 8(8): 1902056. doi:10.1002/adom.201902056http://dx.doi.org/10.1002/adom.201902056
Sobhani A, Knight M W, Wang Y, Zheng B, King N S, Brown L V, Fang Z, Nordlander P, Halas N J. Nat Commun, 2013, 4(1): 1643. doi:10.1038/ncomms2642http://dx.doi.org/10.1038/ncomms2642
Siegmund B, Mischok A, Benduhn J, Zeika O, Ullbrich S, Nehm F, Bohm M, Spoltore D, Frob H, Korner C, Leo K, Vandewal K. Nat Commun, 2017, 8(1): 15421. doi:10.1038/ncomms15421http://dx.doi.org/10.1038/ncomms15421
Yazmaciyan A, Meredith P, Armin A. Adv Opt Mater, 2019, 7(8): 1801543. doi:10.1002/adom.201801543http://dx.doi.org/10.1002/adom.201801543
Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J. Nano Lett, 2017, 17(3): 1995-2002. doi:10.1021/acs.nanolett.6b05418http://dx.doi.org/10.1021/acs.nanolett.6b05418
Song Y, Yu G, Xie B, Zhang K, Huang F. Appl Phys Lett, 2020, 117(9): 093302. doi:10.1063/5.0018274http://dx.doi.org/10.1063/5.0018274
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed Engl, 2017, 56(11): 3045-3049. doi:10.1002/anie.201610944http://dx.doi.org/10.1002/anie.201610944
Li W, Hendriks K H, Roelofs W C, Kim Y, Wienk M M, Janssen R A. Adv Mater, 2013, 25(23): 3182-3186. doi:10.1002/adma.201300017http://dx.doi.org/10.1002/adma.201300017
Wu Y L, Fukuda K, Yokota T, Someya T. Adv Mater, 2019, 31(43): e1903687. doi:10.1002/adma.201903687http://dx.doi.org/10.1002/adma.201903687
Li H, Lu K, Wei Z. Adv Energy Mater, 2017, 7(17): 1602540. doi:10.1002/aenm.201602540http://dx.doi.org/10.1002/aenm.201602540
Li Z, Gao F, Greenham N C, McNeill C R. Adv Funct Mater, 2011, 21(8): 1419-1431. doi:10.1002/adfm.201002154http://dx.doi.org/10.1002/adfm.201002154
McNeill C R, Hwang I, Greenham N C. J Appl Phys, 2009, 106(2): 024507. doi:10.1063/1.3177337http://dx.doi.org/10.1063/1.3177337
Kirchartz T, Agostinelli T, Campoy-Quiles M, Gong W, Nelson J. J Phys Chem Lett, 2012, 3(23): 3470-3475. doi:10.1021/jz301639yhttp://dx.doi.org/10.1021/jz301639y
Hwang I, McNeill C R, Greenham N C. J Appl Phys, 2009, 106(9): 094506. doi:10.1063/1.3247547http://dx.doi.org/10.1063/1.3247547
Street R A, Yang Y, Thompson B C, McCulloch I. J Phys Chem C, 2016, 120(39): 22169-22178. doi:10.1021/acs.jpcc.6b06561http://dx.doi.org/10.1021/acs.jpcc.6b06561
Kirchartz T, Gong W, Hawks S A, Agostinelli T, MacKenzie R C I, Yang Y, Nelson J. J Phys Chem C, 2012, 116(14): 7672-7680. doi:10.1021/jp300397fhttp://dx.doi.org/10.1021/jp300397f
Yao W, Wu Z, Huang E, Huang L, London A E, Liu Z, Azoulay J D, Ng T N. ACS Appl Electron Mater, 2019, 1(5): 660-666. doi:10.1021/acsaelm.9b00009http://dx.doi.org/10.1021/acsaelm.9b00009
Gregg B A. J Phys Chem C, 2009, 113(15):5899-5901. doi:10.1021/jp900616ghttp://dx.doi.org/10.1021/jp900616g
Gregg B A. Soft Matter, 2009, 5(1):2985-2989. doi:10.1039/b905722fhttp://dx.doi.org/10.1039/b905722f
Sergeeva N, Ullbrich S, Hofacker A, Koerner C, Leo K. Phys Rev Appl, 2018, 9(2): 024039. doi:10.1103/physrevapplied.9.024039http://dx.doi.org/10.1103/physrevapplied.9.024039
Dang M T, Hirsch L, Wantz G, Wuest J D. Chem Rev, 2013, 113(5): 3734-3765. doi:10.1021/cr300005uhttp://dx.doi.org/10.1021/cr300005u
Yang W, Qiu W, Georgitzikis E, Simoen E, Serron J, Lee J, Lieberman I, Cheyns D, Malinowski P, Genoe J, Chen H, Heremans P. ACS Appl Mater Interfaces, 2021, 13(14): 16766-16774. doi:10.1021/acsami.1c02080http://dx.doi.org/10.1021/acsami.1c02080
Lee C C, Estrada R, Li Y Z, Biring S, Amin N R A, Li M Z, Liu S W, Wong K T. Adv Opt Mater, 2020, 8(1): 2000519. doi:10.1002/adom.202000519http://dx.doi.org/10.1002/adom.202000519
Li W, Xu Y, Meng X, Xiao Z, Li R, Jiang L, Cui L, Zheng M, Liu C, Ding L, Lin Q. Adv Funct Mater, 2019, 29(20): 1808948. doi:10.1002/adfm.201808948http://dx.doi.org/10.1002/adfm.201808948
Han D, Khan Y, Ting J, Zhu J, Combe C, Wadsworth A, McCulloch I, Arias A C. Adv Mater Technol, 2020, 5(5): 1901122. doi:10.1002/admt.201901122http://dx.doi.org/10.1002/admt.201901122
Xu H, Liu J, Zhang J, Zhou G, Luo N, Zhao N. Adv Mater, 2017, 29(31): 1700975. doi:10.1002/adma.201700975http://dx.doi.org/10.1002/adma.201700975
Lochner C M, Khan Y, Pierre A, Arias A C. Nat Commun, 2014, 5(1): 5745. doi:10.1038/ncomms6745http://dx.doi.org/10.1038/ncomms6745
Wei Y, Chen H, Liu T, Wang S, Jiang Y, Song Y, Zhang J, Zhang X, Lu G, Huang F, Wei Z, Huang H. Adv Funct Mater, 2021, 31: 2106326. doi:10.1002/adfm.202106326http://dx.doi.org/10.1002/adfm.202106326
Huang J, Lee J, Vollbrecht J, Brus V V, Dixon A L, Cao D X, Zhu Z, Du Z, Wang H, Cho K, Bazan G C, Nguyen T Q. Adv Mater, 2020, 32(1): e1906027. doi:10.1002/adma.201906027http://dx.doi.org/10.1002/adma.201906027
0
Views
394
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution