浏览全部资源
扫码关注微信
1.高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
2.硅材料国家重点实验室 3.浙江大学材料科学与工程学院 杭州 310027
3.School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
E-mail:hzchen@zju.edu.cn
Published:20 April 2022,
Published Online:20 January 2022,
Received:04 November 2021,
Revised:09 December 2021,
移动端阅览
潘幼文,陶利婷,高健等.以噻吩[3,4-b]并噻吩为核的近红外电子受体及其高性能光探测器[J].高分子学报,2022,53(04):424-432.
Pan You-wen,Tao Li-ting,Gao Jian,et al.A Near-infrared Electron Acceptor with Thieno[3,4-b]thiophene as the Core and the Related High-performance Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(04):424-432.
潘幼文,陶利婷,高健等.以噻吩[3,4-b]并噻吩为核的近红外电子受体及其高性能光探测器[J].高分子学报,2022,53(04):424-432. DOI: 10.11777/j.issn1000-3304.2021.21340.
Pan You-wen,Tao Li-ting,Gao Jian,et al.A Near-infrared Electron Acceptor with Thieno[3,4-b]thiophene as the Core and the Related High-performance Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(04):424-432. DOI: 10.11777/j.issn1000-3304.2021.21340.
为了实现在近红外区的良好光电响应,设计合成了一种A-D-A型有机电子受体TCIC. 由于采用具有强醌式效应的噻吩[3
4-
b
]
并噻吩单元为核,TCIC在780~1000 nm的近红外区具有强吸收以及合适的能级结构,可与常用的聚合物给体PCE10的吸收和能级相匹配. 于是,采用2种器件结构,制备了基于PCE10:TCIC共混膜的自供电式(0 V偏压下)有机光探测器,并发现,相比于正型器件,反型器件更有利于抑制暗电流与总噪声电流. 最终,反型器件在410~1000 nm的宽光谱范围内的比探测率均达到了10
13
Jones以上,而且,在940 nm波长下,器件表现出超宽的线性动态范围(~180 dB)以及极快的响应速度(~6.5 μs),这些指标都处于目前有机光探测器的最优行列. 所以,本工作为高性能近红外受体的分子设计提供了重要指导.
In order to obtain high photoelectric responses in the near-infrared (NIR) region
in this work
an A-D-A type organic electron acceptor
TCIC
is designed and synthesized. Due to the strong quinoid effect of the thieno[3
4-
b
]
thiophene core
TCIC has strong absorptions in the NIR range of 780‒1000 nm and suitable energy levels
which match well with those of the commonly used polymer donor
PCE10. Thus
two device structures are adopted to fabricate the self-powered (at 0 V bias) organic photodetectors (OPDs) based on PCE10:TCIC blended films. Compared to the conventional device
the inverted device is beneficial to suppress dark current and total noise current. Finally
the inverted device achieves the specific detectivities of more than 10
13
Jones across the broad spectrum of 410‒1000 nm
and exhibits an ultra-wide linear dynamic range of ~180 dB and an extremely fast response speed of ~6.5 μs under illumination of lights at 940 nm
giving excellent figure-of-merits comparable to those of the best OPDs reported so far. Therefore
this work provides important guidance for the molecular design of high-performance NIR acceptors.
近红外电子受体噻吩[34-b]并噻吩有机光探测器比探测率
Near-infrared electron acceptorsThieno[34-b]thiopheneOrganic photodetectorsSpecific detectivity
Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33(12): 2007231. doi:10.1002/adma.202007231http://dx.doi.org/10.1002/adma.202007231
Xu Jingqi(许景琦), Fu Weifei(傅伟飞), Yang Shida(杨时达), Liu Tang(刘唐), Li Changzhi(李昌治), Chen Hongzheng(陈红征). Acta Polymerica Sinica(高分子学报), 2018, (2): 164-173. doi:10.11777/j.issn1000-3304.2018.17251http://dx.doi.org/10.11777/j.issn1000-3304.2018.17251
Liu X, Yin Q, Hu Z, Wang Z, Huang F, Cao Y. Chinese J Polym Sci, 2019, 37: 18-27. doi:10.1007/s10118-019-2188-1http://dx.doi.org/10.1007/s10118-019-2188-1
Zhang Z, Bai Y, Li Y. Chinese J Polym Sci, 2021, 39: 1-13. doi:10.1007/s10118-020-2496-5http://dx.doi.org/10.1007/s10118-020-2496-5
Lee J, Ko SJ, Lee H, Huang J, Zhu Z, Seifrid M, Vollbrecht J, Brus V V, Karki A, Wang H, Cho K, Nguyen T Q, Bazan G C. ACS Energy Lett, 2019, 4(6): 1401-1409. doi:10.1021/acsenergylett.9b00721http://dx.doi.org/10.1021/acsenergylett.9b00721
Wang X, Gao S, Han J, Zhang Y, Zhang S, Qiao W, Wang Z. Chinese J Polym Sci, 2021, 39: 831-837. doi:10.1186/s13020-021-00456-9http://dx.doi.org/10.1186/s13020-021-00456-9
Yang W, Qu W, Georgitzikis E, Simoen E, Serron J, Lee J, Lieberman I, Cheyns D, Malinowski P, Genoe J, Chen H, Heremans P. ACS Appl Mater Interfaces, 2021, 13(14): 16766-16774. doi:10.1021/acsami.1c02080http://dx.doi.org/10.1021/acsami.1c02080
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Nat Commun, 2021, 11: 2871. doi:10.1039/c9py01781jhttp://dx.doi.org/10.1039/c9py01781j
Zhang Ming(张明), Zhu Lei(朱磊), Qiu Chaoqun(邱超群), Zhang Yongming(张永明), Liu Feng(刘烽). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 352-358. doi:10.11777/j.issn1000-3304.2019.19010http://dx.doi.org/10.11777/j.issn1000-3304.2019.19010
Li Z, Zhong W, Ying L, Li N, Liu F, Huang F, Cao Y. Chinese J Polym Sci, 2020, 38: 323-331. doi:10.1007/s10118-020-2356-3http://dx.doi.org/10.1007/s10118-020-2356-3
Li Y, He C, Zuo L, Zhao F, Zhan L, Li X, Xia R, Yip H L, Li C Z, Liu X, Chen H. Adv Energy Mater, 2021, 11(11): 2003408. doi:10.1002/aenm.202003408http://dx.doi.org/10.1002/aenm.202003408
Chen Z, Ma S, Zhang K, Hu Z, Yin Q, Huang F, Cao Y. Chinese J Polym Sci, 2021, 39: 35-42. doi:10.1007/s10118-020-2440-8http://dx.doi.org/10.1007/s10118-020-2440-8
Xie C, Yan F. Small, 2017, 13(43): 1701822. doi:10.1002/smll.201701822http://dx.doi.org/10.1002/smll.201701822
Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K,. doi:10.1038/s41586-018-0536-xhttp://dx.doi.org/10.1038/s41586-018-0536-x
Someya T. Nature, 2018, 561: 516-521. doi:10.1038/s41586-018-0536-xhttp://dx.doi.org/10.1038/s41586-018-0536-x
Liu Z X, Lau T K, Zhou G, Li S, Ren J, Das S K, Xia R, Wu G, Zhu H, Lu X, Yip H L, Chen H, Li C Z. Nano Energy, 2019, 63: 103807. doi:10.1016/j.nanoen.2019.06.003http://dx.doi.org/10.1016/j.nanoen.2019.06.003
Chow P C Y, Someya T. Adv Mater, 2020, 32(15): 1902045. doi:10.1002/adma.201902045http://dx.doi.org/10.1002/adma.201902045
Chen Y, Zheng Y, Jiang Y, Fan H, Zhu X. J Am Chem Soc, 2021, 143(11): 4281-4289. doi:10.1021/jacs.0c12818http://dx.doi.org/10.1021/jacs.0c12818
Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170-1174. doi:10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3(4): 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Zhang Z, Zhang S, Liu Z, Zhang Z, Li Y, Li C Z, Chen H. Acta Phys-Chim Sin, 2019, 35(4): 394-400
Li S, Zhan L, Jin Y, Zhou G, Lau T K, Qin R, Shi M, Li C Z, Zhu H, Lu X, Zhang F, Chen H. Adv Mater, 2020, 32(24): 2001160. doi:10.1002/adma.202001160http://dx.doi.org/10.1002/adma.202001160
Li W, Xu Y L, Meng X, Xiao Z, Li R, Jiang L, Cui L, Zheng M, Liu C, Ding L, Lin Q. Adv Funct Mater, 2019, 29(20): 1808948. doi:10.1002/adfm.201808948http://dx.doi.org/10.1002/adfm.201808948
Liu J, Jiang J, Wang S, Li T, Jing X, Liu Y, Wang Y, Wen H, Yao M, Zhan X, Shen L. Small, 2021, 17(43): 2101316. doi:10.1002/smll.202101316http://dx.doi.org/10.1002/smll.202101316
Wei Y, Chen H, Liu T, Wang S, Jiang Y, Song Y, Zhang J, Zhang X, Lu G, Huang F, Wei Z, Huang H. Adv Funct Mater, 2021, DOI: 10.1002/adfm.202106326http://dx.doi.org/10.1002/adfm.202106326
Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X. Adv Mater, 2017, 29(35): 1702125. doi:10.1002/adma.201702125http://dx.doi.org/10.1002/adma.201702125
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56(11): 3045-3049. doi:10.1002/anie.201610944http://dx.doi.org/10.1002/anie.201610944
Li W, Xu Y, Meng X, Xiao Z, Li R, Jiang L, Cui L, Zheng M, Liu C, Ding L, Lin Q. Adv Funct Mater, 2019, 29(20): 1808948. doi:10.1002/adfm.201808948http://dx.doi.org/10.1002/adfm.201808948
He C, Li Y, Liu Y, Li Y, Zhou G, Li S, Zhu H, Lu X, Zhang F, Li C Z, Chen H. J Mater Chem A, 2020, 8(35): 18154-18161. doi:10.1039/d0ta06907hhttp://dx.doi.org/10.1039/d0ta06907h
Chen H Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Nat Photon, 2009, 3(11): 649-653. doi:10.1038/nphoton.2009.192http://dx.doi.org/10.1038/nphoton.2009.192
Hou J, Chen H, Zhang S, Chen R, Yang Y, Wu Y, Li G. J Am Chem Soc, 2009, 131(43): 15586-15587. doi:10.1021/ja9064975http://dx.doi.org/10.1021/ja9064975
Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J. Angew Chem Int Ed, 2011, 50(41): 9697-9702. doi:10.1002/anie.201103313http://dx.doi.org/10.1002/anie.201103313
Li S, Zhan L, Liu F, Ren J, Shi M, Li C Z, Russell T P, Chen H. Adv Mater, 2018, 30(6): 1705208. doi:10.1002/adma.201705208http://dx.doi.org/10.1002/adma.201705208
Geng S, Yang W, Gao J, Li S, Shi M, Lau T K, Lu X, Li C Z, Chen H. Chinese J Polym Sci, 2019, 37: 1005-1014. doi:10.1007/s10118-019-2309-xhttp://dx.doi.org/10.1007/s10118-019-2309-x
Huang H, Guo Q, Feng S, Zhang C, Bi Z, Xue W, Yang J, Song J, Li C, Xu X, Tang Z, Ma W, Bo Z. Nat Commun, 2019, 10(1): 3038. doi:10.1038/s41467-019-11001-6http://dx.doi.org/10.1038/s41467-019-11001-6
He C, Li Y, Li S, Yu Z P, Li Y, Lu X, Shi M, Li C Z, Chen H. ACS Appl Mater Interfaces, 2020, 12(14): 16700-16706. doi:10.1021/acsami.0c00837http://dx.doi.org/10.1021/acsami.0c00837
Pang S, Zhou X, Zhang S, Tang H, Dhakal S, Gu X, Duan C, Huang F, Cao Y. ACS Appl Mater Interfaces, 2020, 12(14): 16531-16540. doi:10.1021/acsami.0c01850http://dx.doi.org/10.1021/acsami.0c01850
Gao J, Li Y, Li S, Xia X, Lu X, Shi M, Chen H. Sol Energy Mater Sol Cells, 2021, 225: 111046. doi:10.1016/j.solmat.2021.111046http://dx.doi.org/10.1016/j.solmat.2021.111046
Ye S, Chen S, Li S, Pan Y, Xia X, Fu W, Zuo L, Lu X, Shi M, Chen H. ChemSusChem, 2021, 14(17): 3599-3606. doi:10.1002/cssc.202100689http://dx.doi.org/10.1002/cssc.202100689
Yao Z, Li Y, Li S, Xiang J, Xia X, Lu X, Shi M, Chen H. ACS Appl Energy Mater, 2020, 4(1): 819-827. doi:10.1021/acsaem.0c02719http://dx.doi.org/10.1021/acsaem.0c02719
Huang J, Lee J, Vollbrecht J, Brus V V, Dixon A L, Cao D X, Zhu Z, Du Z, Wang H, Cho K, Bazan G C, Nguyen T Q. Adv Mater, 2020, 32(1): 1906027. doi:10.1002/adma.201906027http://dx.doi.org/10.1002/adma.201906027
Wen T J, Wang D, Tao L, Xiao Y, Tao Y D, Li Y, Lu X, Fang Y, Li C Z, Chen H, Yang D. ACS Appl Mater Interfaces, 2020, 12(35): 39515-39523. doi:10.1021/acsami.0c12100http://dx.doi.org/10.1021/acsami.0c12100
0
Views
165
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution