浏览全部资源
扫码关注微信
中国科学院大学材料科学与光电技术学院 北京 100049
Published:20 April 2022,
Published Online:21 February 2022,
Received:24 November 2021,
Revised:24 December 2021,
移动端阅览
陈皓,黄辉.有机光电突触器件的研究与进展[J].高分子学报,2022,53(04):374-395.
Chen Hao,Huang Hui.Recent Research and Progress of Organic Photoelectric Synaptic Devices[J].ACTA POLYMERICA SINICA,2022,53(04):374-395.
陈皓,黄辉.有机光电突触器件的研究与进展[J].高分子学报,2022,53(04):374-395. DOI: 10.11777/j.issn1000-3304.2021.21363.
Chen Hao,Huang Hui.Recent Research and Progress of Organic Photoelectric Synaptic Devices[J].ACTA POLYMERICA SINICA,2022,53(04):374-395. DOI: 10.11777/j.issn1000-3304.2021.21363.
大脑对视觉信息学习和记忆等功能的实现是通过视觉神经元调控突触权重进行的,对光响应的突触器件是实现低能耗人工视觉系统和神经形态计算的关键. 因此,近年来有机光电突触器件引起了学术界的广泛关注. 本文指出有机光电突触器件结合了有机光电探测器和有机忆阻器2个基本光电子器件功能,实现对光信息的传感和记忆,介绍了光电突触器件的基本性能和指标,随后结合器件结构综述了目前文章中实现光电突触性能的机理,分别为光诱导载流子的捕获和去捕获,持续光电导和光致化学反应/构象改变机理. 接下来从关联学习、图像记忆、图像识别和神经形态计算4个方面综述了有机光电突触器件的应用方向,最后总结了其目前存在的问题和挑战,并对未来发展趋势进行了展望. 作为有机电子学、神经形态学、微电子学等多学科交叉的研究方向,有机光电突触将逐步从单一器件走向大面积、大规模集成系统,大大促进人工智能领域的发展.
Visual information processing and memory in brain is carried out through the manipulation of synaptic plasticity. Light-responsive synaptic devices are the key to realizing artificial visual systems and neuromorphic computing with low energy consumption. Thus
organic photoelectric synaptic devices
which can realize the sensing and memory of optical information
have attracted increasing attention in recent years. This article first introduces that the function of organic photoelectric synaptic devices is integration of organic photodetectors and organic memristors. Then basic synaptic behavioural performance (excitatory/inhibitory post-synaptic current
paired-pulse facilitation/depression
short/long-term plasticity
learning experience and spiking-timing/rate-dependent plasticity) and important parameter indexes (energy consumption
retention time and linearity) of photoelectric synaptic devices are listed. Next
the mechanisms of organic photoelectric synaptic devices are divided into photo-induced carrier trapping and de-trapping
persistent photoconductivity and photochemical reaction/conformational change based on the device structures. Then four applications of photoelectric synaptic devices are reviewed
which is associative learning
image memory
image recognition and neuromorphic computing. Finally
the current problems and challenges of this field are summarized
and the future development trend is prospected. Nowadays
the design principle of organic molecules for organic photoelectric synaptic devices is ambiguous
so more researches and summaries on structure-property relationship should be carried out. Moreover
the evaluation criteria of synaptic devices should be established and more biological synaptic behaviors need to be emulated. As a multidisciplinary research topic of organic electronics
neuromorphology
microelectronics
etc
.
organic photoelectric synapses will gradually develop from a single device into a large-area
large-scale
multi-functional integrated system
which greatly promotes the development of artificial intelligence.
有机光电传感神经突触忆阻器仿生视觉人工智能
Organic photoelectric sensingNeural synapseMemristorBionic visionArtificial intelligence
Zidan M A, Strachan J P, Lu W D. Nat Electron, 2018, 1(1): 22-29. doi:10.1038/s41928-017-0006-8http://dx.doi.org/10.1038/s41928-017-0006-8
van de Burgt Y, Melianas A, Keene S T, Malliaras G, Salleo A. Nat Electron, 2018, 1(7): 386-397. doi:10.1038/s41928-018-0103-3http://dx.doi.org/10.1038/s41928-018-0103-3
Sun B, Guo T, Zhou G, Ranjan S, Jiao Y, Wei L, Zhou Y N, Wu Y A. Mater Today Phys, 2021, 18: 100393. doi:10.1016/j.mtphys.2021.100393http://dx.doi.org/10.1016/j.mtphys.2021.100393
Park Y, Kim M K, Lee J S. J Mater Chem C, 2020, 8(27): 9163-9183. doi:10.1039/d0tc01500hhttp://dx.doi.org/10.1039/d0tc01500h
Drachman D A. Neurology, 2005, 64(12): 2004. doi:10.1212/01.wnl.0000166914.38327.bbhttp://dx.doi.org/10.1212/01.wnl.0000166914.38327.bb
Chen F, Zhou Y, Zhu Y, Zhu R, Guan P, Fan J, Zhou L, Valanoor N, von Wegner F, Saribatir E, Birznieks I, Wan T, Chu D. J Mater Chem C, 2021, 9(27): 8372-8394. doi:10.1039/d1tc01211hhttp://dx.doi.org/10.1039/d1tc01211h
Pan X, Jin T, Gao J, Han C, Shi Y, Chen W. Small, 2020, 16(34): e2001504. doi:10.1002/smll.202001504http://dx.doi.org/10.1002/smll.202001504
Yang J Q, Wang R, Ren Y, Mao J Y, Wang Z P, Zhou Y, Han S T. Adv Mater, 2020, 32(52): e2003610. doi:10.1002/adma.202070392http://dx.doi.org/10.1002/adma.202070392
Choi S, Yang J, Wang G. Adv Mater, 2020, 32(51): e2004659. doi:10.1002/adma.202004659http://dx.doi.org/10.1002/adma.202004659
Benner A F, Ignatowski M, Kash J A, Kuchta D M, Ritter M B. IBM J Res Dev, 2005, 49(4.5): 755-775. doi:10.1147/rd.494.0755http://dx.doi.org/10.1147/rd.494.0755
Han X, Xu Z, Wu W, Liu X, Yan P, Pan C. Small Struct, 2020, 1(3): 2000029. doi:10.1002/sstr.202000029http://dx.doi.org/10.1002/sstr.202000029
Gkoupidenis P, Koutsouras D A, Malliaras G G. Nat Commun, 2017, 8(1): 15448. doi:10.1038/ncomms15448http://dx.doi.org/10.1038/ncomms15448
Park H L, Lee Y, Kim N, Seo D G, Go G T, Lee T W. Adv Mater, 2020, 32(15): 1903558. doi:10.1002/adma.201903558http://dx.doi.org/10.1002/adma.201903558
Ni Y, Wang Y, Xu W. Small, 2021, 17(9): e1905332. doi:10.1002/smll.201905332http://dx.doi.org/10.1002/smll.201905332
Yu S, Peng A, Zhang S, Huang H. Sci China Chem, 2018, 61(11): 1359-1367. doi:10.1007/s11426-018-9315-2http://dx.doi.org/10.1007/s11426-018-9315-2
Huang H, Yang L, Facchetti A, Marks T J. Chem Rev, 2017, 117(15): 10291-10318. doi:10.1021/acs.chemrev.7b00084http://dx.doi.org/10.1021/acs.chemrev.7b00084
Lee Y, Lee T W. Acc Chem Res, 2019, 52(4): 964-974. doi:10.1021/acs.accounts.8b00553http://dx.doi.org/10.1021/acs.accounts.8b00553
Lee Y, Park H L, Kim Y, Lee T W. Joule, 2021, 5(4): 794-810. doi:10.1016/j.joule.2021.01.005http://dx.doi.org/10.1016/j.joule.2021.01.005
Yu Y, Ma Q, Ling H, Li W, Ju R, Bian L, Shi N, Qian Y, Yi M, Xie L, Huang W. Adv Funct Mater, 2019, 29(50): 1904602. doi:10.1002/adfm.201904602http://dx.doi.org/10.1002/adfm.201904602
Shao L, Zhao Y, Liu Y. Adv Funct Mater, 2021, 31(28): 2101951. doi:10.1002/adfm.202101951http://dx.doi.org/10.1002/adfm.202101951
Mao J Y, Zhou L, Zhu X, Zhou Y, Han S T. Adv Opt Mater, 2019, 7(22): 1900766. doi:10.1002/adom.201900766http://dx.doi.org/10.1002/adom.201900766
Cho S W, Kwon S M, Kim Y H, Park S K. Adv Intell Syst, 2021, 3(6): 2000162. doi:10.1002/aisy.202000162http://dx.doi.org/10.1002/aisy.202000162
Zhu X, Lu W D. ACS Nano, 2018, 12(2): 1242-1249. doi:10.1021/acsnano.7b07317http://dx.doi.org/10.1021/acsnano.7b07317
Sun Z, Li J, Liu C, Yang S, Yan F. Nano Lett, 2021, 21(1): 723-730. doi:10.1021/acs.nanolett.0c04370http://dx.doi.org/10.1021/acs.nanolett.0c04370
Ham S, Choi S, Cho H, Na S I, Wang G. Adv Funct Mater, 2019, 29(5): 1806646. doi:10.1002/adfm.201806646http://dx.doi.org/10.1002/adfm.201806646
Zhao S, Ni Z, Tan H, Wang Y, Jin H, Nie T, Xu M, Pi X, Yang D. Nano Energy, 2018, 54: 383-389. doi:10.1016/j.nanoen.2018.10.018http://dx.doi.org/10.1016/j.nanoen.2018.10.018
Bian H, Qin X, Wu Y, Yi Z, Liu S, Wang Y, Brites C D S, Carlos L D, Liu X. Adv Mater, 2021: e2101895. doi:10.1002/adma.202104370http://dx.doi.org/10.1002/adma.202104370
Zhu Y, Wu C, Xu Z, Liu Y, Hu H, Guo T, Kim T W, Chai Y, Li F. Nano Lett, 2021, 21(14): 6087-6094. doi:10.1021/acs.nanolett.1c01482http://dx.doi.org/10.1021/acs.nanolett.1c01482
Wang C, Zhang X, Hu W. Chem Soc Rev, 2020, 49(3): 653-670. doi:10.1039/c9cs00431ahttp://dx.doi.org/10.1039/c9cs00431a
Yang D, Ma D. Adv Opt Mater, 2019, 7(1): 1800522. doi:10.1002/adom.201800522http://dx.doi.org/10.1002/adom.201800522
Vanderspikken J, Maes W, Vandewal K. Adv Funct Mater, 2021, 31(36): 2104060. doi:10.1002/adfm.202104060http://dx.doi.org/10.1002/adfm.202104060
Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat Commun, 2015, 6(1): 1-8. doi:10.1038/ncomms7343http://dx.doi.org/10.1038/ncomms7343
Zhao Z, Xu C, Niu L, Zhang X, Zhang F. Laser Photonics Rev, 2020, 14(11): 2000262. doi:10.1002/lpor.202000262http://dx.doi.org/10.1002/lpor.202000262
Zhao Z, Liu M, Yang K, Xu C, Guan Y, Ma X, Wang J, Zhang F. Adv Funct Mater, 2021, 31(43): 2106009. doi:10.1002/adfm.202106009http://dx.doi.org/10.1002/adfm.202106009
Li L, Zhang F, Wang J, An Q, Sun Q, Wang W, Zhang J, Teng F. Sci Rep, 2015, 5(1): 9181. doi:10.1038/srep09181http://dx.doi.org/10.1038/srep09181
Miao J, Zhang F. Laser Photonics Rev, 2019, 13(2): 1800204. doi:10.1002/lpor.201800204http://dx.doi.org/10.1002/lpor.201800204
Chua L. IEEE Trans Circuit Theory, 1971, 18(5): 507-519. doi:10.1109/tct.1971.1083337http://dx.doi.org/10.1109/tct.1971.1083337
Strukov D B, Snider G S, Stewart D R, Williams R S. Nature, 2008, 453(7191): 80-83. doi:10.1038/nature06932http://dx.doi.org/10.1038/nature06932
Li Y, Qian Q, Zhu X, Li Y, Zhang M, Li J, Ma C, Li H, Lu J, Zhang Q. InfoMat, 2020, 2(6): 995-1033. doi:10.1002/inf2.12120http://dx.doi.org/10.1002/inf2.12120
Pereda A E. Nat Rev Neurosci, 2014, 15(4): 250-263. doi:10.1038/nrn3708http://dx.doi.org/10.1038/nrn3708
Bakkum D J, Frey U, Radivojevic M, Russell T L, Müller J, Fiscella M, Takahashi H, Hierlemann A. Nat Commun, 2013, 4(1): 2181. doi:10.1038/ncomms3181http://dx.doi.org/10.1038/ncomms3181
Bi G Q, Poo M M. J Neurosci, 1998, 18(24): 10464. doi:10.1523/jneurosci.18-24-10464.1998http://dx.doi.org/10.1523/jneurosci.18-24-10464.1998
Kandel E R, Squire L R. Science, 2000, 290(5494): 1113. doi:10.1126/science.290.5494.1113http://dx.doi.org/10.1126/science.290.5494.1113
Chih B, Engelman H, Scheiffele P. Science, 2005, 307(5713): 1324. doi:10.1126/science.1107470http://dx.doi.org/10.1126/science.1107470
Sturman B, Podivilov E, Gorkunov M. Phys Rev Lett, 2003, 91(17): 176602. doi:10.1103/physrevlett.91.176602http://dx.doi.org/10.1103/physrevlett.91.176602
Hu S G, Liu Y, Chen T P, Liu Z, Yu Q, Deng L J, Yin Y, Hosaka S. Appl Phys Lett, 2013, 102(18): 183510. doi:10.1063/1.4804374http://dx.doi.org/10.1063/1.4804374
Zucker R S, Regehr W G. Annu Rev Physiol, 2002, 64(1): 355-405. doi:10.1146/annurev.physiol.64.092501.114547http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
McGaugh J L. Science, 2000, 287(5451): 248. doi:10.1126/science.287.5451.248http://dx.doi.org/10.1126/science.287.5451.248
Izquierdo I, McGaugh J L. Behav Pharmacol, 2000, 11(7): 517-534. doi:10.1097/00008877-200011000-00001http://dx.doi.org/10.1097/00008877-200011000-00001
Mandal S, Long B, Jha R. IEEE Trans Electron Devices, 2013, 60(12): 4219-4225. doi:10.1109/ted.2013.2288327http://dx.doi.org/10.1109/ted.2013.2288327
He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X. Small, 2018, 14(15): 1800079. doi:10.1002/smll.201800079http://dx.doi.org/10.1002/smll.201800079
Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W. ACS Nano, 2019, 13(2): 2634-2642
Froemke R C, Dan Y. Nature, 2002, 416(6879): 433-438. doi:10.1038/416433ahttp://dx.doi.org/10.1038/416433a
Dan Y, Poo M M. Physiol Rev, 2006, 86(3): 1033-1048. doi:10.1152/physrev.00030.2005http://dx.doi.org/10.1152/physrev.00030.2005
Lengyel M, Kwag J, Paulsen O, Dayan P. Nat Neurosci, 2005, 8(12): 1677-1683. doi:10.1038/nn1561http://dx.doi.org/10.1038/nn1561
Dudman J T, Tsay D, Siegelbaum S A. Neuron, 2007, 56(5): 866-879. doi:10.1016/j.neuron.2007.10.020http://dx.doi.org/10.1016/j.neuron.2007.10.020
Shouval H Z, Wang S S, Wittenberg G M. Front Comput Neurosci, 2010, 4: 1662-5188. doi:10.3389/fncom.2010.00019http://dx.doi.org/10.3389/fncom.2010.00019
Xiao Z, Huang J. Adv Electron Mater, 2016, 2(7): 1600100. doi:10.1002/aelm.201600100http://dx.doi.org/10.1002/aelm.201600100
Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X, Yang D. Nano Energy, 2018, 52: 422-430. doi:10.1016/j.nanoen.2018.08.018http://dx.doi.org/10.1016/j.nanoen.2018.08.018
Martin S J, Grimwood P D, Morris R G. Annu Rev Neurosci, 2000, 23: 649-711. doi:10.1146/annurev.neuro.23.1.649http://dx.doi.org/10.1146/annurev.neuro.23.1.649
Jiang J, Hu W, Xie D, Yang J, He J, Gao Y, Wan Q. Nanoscale, 2019, 11(3): 1360-1369. doi:10.1039/c8nr07133khttp://dx.doi.org/10.1039/c8nr07133k
Xu W, Min S Y, Hwang H, Lee T W. Sci Adv, 2016, 2(6): e1501326. doi:10.1126/sciadv.1501326http://dx.doi.org/10.1126/sciadv.1501326
Indiveri G, Chicca E, Douglas R. IEEE Trans Neural Netw, 2006, 17(1): 211-221. doi:10.1109/tnn.2005.860850http://dx.doi.org/10.1109/tnn.2005.860850
Huang W, Hang P, Wang Y, Wang K, Han S, Chen Z, Peng W, Zhu Y, Xu M, Zhang Y, Fang Y, Yu X, Yang D, Pi X. Nano Energy, 2020, 73: 104790. doi:10.1016/j.nanoen.2020.104790http://dx.doi.org/10.1016/j.nanoen.2020.104790
Chen J Y, Yang D L, Jhuang F C, Fang Y H, Benas J S, Liang F C, Kuo C C. Adv Funct Mater, 2021, 31(47): 2105911. doi:10.1002/adfm.202105911http://dx.doi.org/10.1002/adfm.202105911
Chen H, Lv L, Wei Y, Liu T, Wang S, Shi Q, Huang H. Cell Rep Phys Sci, 2021, 2(7): 100507. doi:10.1016/j.xcrp.2021.100507http://dx.doi.org/10.1016/j.xcrp.2021.100507
Gu G, Kane M G, Doty J E, Firester A H. Appl Phys Lett, 2005, 87(24): 243512. doi:10.1063/1.2146059http://dx.doi.org/10.1063/1.2146059
Novembre C, Guérin D, Lmimouni K, Gamrat C, Vuillaume D. Appl Phys Lett, 2008, 92(10): 103314. doi:10.1063/1.2896602http://dx.doi.org/10.1063/1.2896602
Chen P, Lin B, Wang I, Hou T, Ye J, Vrudhula S, Seo J, Cao Y, Yu S. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Austin: IEEE, 2015. 194-199. doi:10.1109/iccad.2015.7372570http://dx.doi.org/10.1109/iccad.2015.7372570
Choi C, Leem J, Kim M S, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S, Kim D H. Nat Commun, 2020, 11(1): 5934. doi:10.1038/s41467-020-19806-6http://dx.doi.org/10.1038/s41467-020-19806-6
Tang J, He C, Tang J, Yue K, Zhang Q, Liu Y, Wang Q, Wang S, Li N, Shen C, Zhao Y, Liu J, Yuan J, Wei Z, Li J, Watanabe K, Taniguchi T, Shang D, Wang S, Yang W, Yang R, Shi D, Zhang G. Adv Funct Mater, 2021, 31(27): 2011083. doi:10.1002/adfm.202011083http://dx.doi.org/10.1002/adfm.202011083
Tang J, Bishop D, Kim S, Copel M, Gokmen T, Todorov T, Shin S, Lee K T, Solomon P, Chan K, Haensch W, Rozen J. ECRAM as scalable synaptic cell for high-speed, low-power neuromorphic computing. In: 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2018. 13.11.11-13.11.14. doi:10.1109/iedm.2018.8614551http://dx.doi.org/10.1109/iedm.2018.8614551
Wang H, Liu H, Zhao Q, Ni Z, Zou Y, Yang J, Wang L, Sun Y, Guo Y, Hu W, Liu Y. Adv Mater, 2017, 29(32): 1701772. doi:10.1002/adma.201701772http://dx.doi.org/10.1002/adma.201701772
Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J, Bao Z, Lee T W. Sci Adv, 2018, 4(11): eaat7387. doi:10.1126/sciadv.aat7387http://dx.doi.org/10.1126/sciadv.aat7387
Kim S, Roe D G, Choi Y Y, Woo H, Park J, Lee J I, Choi Y, Jo S B, Kang M S, Song Y J, Jeong S, Cho J H. Sci Adv, 2021, 7(15): eabe3996. doi:10.1126/sciadv.abe3996http://dx.doi.org/10.1126/sciadv.abe3996
Kaake L G, Barbara P F, Zhu X Y. J Phys Chem Lett, 2010, 1(3): 628-635. doi:10.1021/jz9002857http://dx.doi.org/10.1021/jz9002857
Pei K, Ren X, Zhou Z, Zhang Z, Ji X, Chan P K L. Adv Mater, 2018, 30(13): e1706647. doi:10.1002/adma.201706647http://dx.doi.org/10.1002/adma.201706647
Zheng C, Liao Y, Han S T, Zhou Y. Adv Electron Mater, 2020, 6(12): 2000641. doi:10.1002/aelm.202000641http://dx.doi.org/10.1002/aelm.202000641
Yang B, Lu Y, Jiang D, Li Z, Zeng Y, Zhang S, Ye Y, Liu Z, Ou Q, Wang Y, Dai S, Yi Y, Huang J. Adv Mater, 2020, 32(28): e2001227. doi:10.1002/adma.202001227http://dx.doi.org/10.1002/adma.202001227
Wang X, Lu Y, Zhang J, Zhang S, Chen T, Ou Q, Huang J. Small, 2021, 17(2): e2005491. doi:10.1002/smll.202005491http://dx.doi.org/10.1002/smll.202005491
Hao D, Zhang J, Dai S, Zhang J, Huang J. ACS Appl Mater Interfaces, 2020, 12(35): 39487-39495. doi:10.1021/acsami.0c10851http://dx.doi.org/10.1021/acsami.0c10851
Wang K, Dai S, Zhao Y, Wang Y, Liu C, Huang J. Small, 2019, 15(11): e1900010. doi:10.1002/smll.201900010http://dx.doi.org/10.1002/smll.201900010
Wu X, Dai D, Ling Y, Chen S, Huang C, Feng S, Huang W. ACS Appl Mater Interfaces, 2020, 12(27): 30627-30634. doi:10.1021/acsami.0c05809http://dx.doi.org/10.1021/acsami.0c05809
Zhang Q, Ye X, Zheng Y, Wang Y, Li L, Gao Z, Wu J, Dong H, Geng D, Hu W. J Mater Chem C, 2022, Doi: 10.1039/D1TC02284Ahttp://dx.doi.org/10.1039/D1TC02284A
Lan S, Zhong J, Chen J, He W, He L, Yu R, Chen G, Chen H. J Mater Chem C, 2021, 9(10): 3412-3420. doi:10.1039/d0tc05738jhttp://dx.doi.org/10.1039/d0tc05738j
Lan S, Zhong J, Li E, Yan Y, Wu X, Chen Q, Lin W, Chen H, Guo T. ACS Appl Mater Interfaces, 2020, 12(28): 31716-31724. doi:10.1021/acsami.0c09221http://dx.doi.org/10.1021/acsami.0c09221
Qian C, Oh S, Choi Y, Kim J H, Sun J, Huang H, Yang J, Gao Y, Park J H, Cho J H. Nano Energy, 2019, 66: 104095. doi:10.1016/j.nanoen.2019.104095http://dx.doi.org/10.1016/j.nanoen.2019.104095
Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J. ACS Nano, 2021, 15(1): 1497-1508. doi:10.1021/acsnano.0c08921http://dx.doi.org/10.1021/acsnano.0c08921
Zhu Q B, Li B, Yang D D, Liu C, Feng S, Chen M L, Sun Y, Tian Y N, Su X, Wang X M, Qiu S, Li Q W, Li X M, Zeng H B, Cheng H M, Sun D M. Nat Commun, 2021, 12(1): 1798. doi:10.1038/s41467-021-22047-whttp://dx.doi.org/10.1038/s41467-021-22047-w
Qian C, Sun J, Kong L, Fu Y, Chen Y, Wang J, Wang S, Xie H, Huang H, Yang J, Gao Y. ACS Photonics, 2017, 4(10): 2573-2579. doi:10.1021/acsphotonics.7b00898http://dx.doi.org/10.1021/acsphotonics.7b00898
Chen C C, Chiu M Y, Sheu J T, Wei K H. Appl Phys Lett, 2008, 92(14): 143105. doi:10.1063/1.2899997http://dx.doi.org/10.1063/1.2899997
Wang Y, Lv Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X, Han S T. Adv Mater, 2018, 30(38): e1802883. doi:10.1002/adma.201870287http://dx.doi.org/10.1002/adma.201870287
Zhou Y, Han S T, Chen X, Wang F, Tang Y B, Roy V A. Nat Commun, 2014, 5: 4720. doi:10.1038/ncomms5720http://dx.doi.org/10.1038/ncomms5720
Li Y, Wang Y, Yin L, Huang W, Peng W, Zhu Y, Wang K, Yang D, Pi X. Sci China Inf Sci, 2021, 64(6): 162401. doi:10.1007/s11432-020-3035-8http://dx.doi.org/10.1007/s11432-020-3035-8
Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y. Small, 2021: e2102820. doi:10.1002/smll.202102820http://dx.doi.org/10.1002/smll.202102820
Zhang L, Wu T, Guo Y, Zhao Y, Sun X, Wen Y, Yu G, Liu Y. Sci Rep, 2013, 3: 1080. doi:10.1038/srep01080http://dx.doi.org/10.1038/srep01080
Yi M, Xie M, Shao Y, Li W, Ling H, Xie L, Yang T, Fan Q, Zhu J, Huang W. J Mater Chem C, 2015, 3(20): 5220-5225. doi:10.1039/c5tc00680ehttp://dx.doi.org/10.1039/c5tc00680e
Chiang Y C, Hung C C, Lin Y C, Chiu Y C, Isono T, Satoh T, Chen W C. Adv Mater, 2020, 32(36): e2002638
Xu T, Guo S, Qi W, Li S, Xu M, Wang W. ACS Appl Mater Interfaces, 2020, 12(19): 21952-21960. doi:10.1021/acsami.0c01162http://dx.doi.org/10.1021/acsami.0c01162
Lee K, Han H, Kim Y, Park J, Jang S, Lee H, Lee S W, Kim H, Kim Y, Kim T, Kim D, Wang G, Park C. Adv Funct Mater, 2021, 31(52): 2105596. doi:10.1002/adfm.202105596http://dx.doi.org/10.1002/adfm.202105596
Lian H, Liao Q, Yang B, Zhai Y, Han S T, Zhou Y. J Mater Chem C, 2021, 9(2): 640-648. doi:10.1039/d0tc04115ghttp://dx.doi.org/10.1039/d0tc04115g
Lv Z, Chen M, Qian F, Roy V A L, Ye W, She D, Wang Y, Xu Z X, Zhou Y, Han S T. Adv Funct Mater, 2019, 29(31): 1902374. doi:10.1002/adfm.201902374http://dx.doi.org/10.1002/adfm.201902374
Mu B, Guo L, Liao J, Xie P, Ding G, Lv Z, Zhou Y, Han S T, Yan Y. Small, 2021: e2103837. doi:10.1002/smll.202103837http://dx.doi.org/10.1002/smll.202103837
Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S, Lee T W. Adv Mater, 2020, 32(11): e1906899. doi:10.1002/adma.202070080http://dx.doi.org/10.1002/adma.202070080
Chen C H, Wang Y, Michinobu T, Chang S W, Chiu Y C, Ke C Y, Liou G S. ACS Appl Mater Interfaces, 2020, 12(5): 6144-6150. doi:10.1021/acsami.9b20960http://dx.doi.org/10.1021/acsami.9b20960
Ling H, Lin J, Yi M, Liu B, Li W, Lin Z, Xie L, Bao Y, Guo F, Huang W. ACS Appl Mater Interfaces, 2016, 8(29): 18969-18977. doi:10.1021/acsami.6b03792http://dx.doi.org/10.1021/acsami.6b03792
Zhou L, Han S T, Shu S, Zhuang J, Yan Y, Sun Q J, Zhou Y, Roy V A L. ACS Appl Mater Interfaces, 2017, 9(39): 34101-34110. doi:10.1021/acsami.7b07486http://dx.doi.org/10.1021/acsami.7b07486
Du L, Luo X, Lv W, Zhao F, Peng Y, Tang Y, Wang Y. Phys Chem Chem Phys, 2016, 18(18): 13108-13117. doi:10.1039/c6cp00432fhttp://dx.doi.org/10.1039/c6cp00432f
Chou Y H, Chang H C, Liu C L, Chen W C. Polym Chem, 2015, 6(3): 341-352. doi:10.1039/c4py01213ehttp://dx.doi.org/10.1039/c4py01213e
Wu X, Chu Y, Liu R, Katz H E, Huang J. Adv Sci (Weinh), 2017, 4(12): 1700442. doi:10.1002/advs.201700442http://dx.doi.org/10.1002/advs.201700442
Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B, Huang J. ACS Appl Mater Interfaces, 2018, 10(25): 21472-21480. doi:10.1021/acsami.8b05036http://dx.doi.org/10.1021/acsami.8b05036
Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W, Liu Y. Adv Mater, 2018, 30(46): e1803961. doi:10.1002/adma.201870349http://dx.doi.org/10.1002/adma.201870349
Lee H R, Lee D, Oh J H. Adv Mater, 2021, 33(17): e2100119. doi:10.1002/adma.202100119http://dx.doi.org/10.1002/adma.202100119
Jia R, Wu X, Deng W, Zhang X, Huang L, Niu K, Chi L, Jie J. Adv Funct Mater, 2019, 29(45): 1905657. doi:10.1002/adfm.201905657http://dx.doi.org/10.1002/adfm.201905657
Yang C, Qian J, Jiang S, Wang H, Wang Q, Wan Q, Chan P K L, Shi Y, Li Y. Adv Opt Mater, 2020, 8(13): 2000153. doi:10.1002/adom.202000153http://dx.doi.org/10.1002/adom.202000153
Orgiu E, Samori P. Adv Mater, 2014, 26(12): 1827-1845. doi:10.1002/adma.201304695http://dx.doi.org/10.1002/adma.201304695
Shi Q, Liu D, Dai S, Huang J. Adv Opt Mater, 2021, 9(20): 2100654. doi:10.1002/adom.202100654http://dx.doi.org/10.1002/adom.202100654
Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E, Samori P. Nat Nanotechnol, 2016, 11(9): 769-775. doi:10.1038/nnano.2016.87http://dx.doi.org/10.1038/nnano.2016.87
Li E, He W, Yu R, He L, Wu X, Chen Q, Liu Y, Chen H, Guo T. ACS Appl Mater Interfaces, 2021, 13(24): 28564-28573. doi:10.1021/acsami.1c05484http://dx.doi.org/10.1021/acsami.1c05484
John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z, Mathews N. Adv Mater, 2018, 30(25): 1800220. doi:10.1002/adma.201800220http://dx.doi.org/10.1002/adma.201800220
Cho S W, Kwon S M, Lee M, Jo J W, Heo J S, Kim Y H, Cho H K, Park S K. Nano Energy, 2019, 66: 104097. doi:10.1016/j.nanoen.2019.104097http://dx.doi.org/10.1016/j.nanoen.2019.104097
Ahmed T, Kuriakose S, Mayes E L H, Ramanathan R, Bansal V, Bhaskaran M, Sriram S, Walia S. Small, 2019, 15(22): e1900966. doi:10.1002/smll.201900966http://dx.doi.org/10.1002/smll.201900966
Yin L, Han C, Zhang Q, Ni Z, Zhao S, Wang K, Li D, Xu M, Wu H, Pi X, Yang D. Nano Energy, 2019, 63: 103859. doi:10.1016/j.nanoen.2019.103859http://dx.doi.org/10.1016/j.nanoen.2019.103859
0
Views
678
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution