Ji Chen-lin,Jie Su-yun,Li Bo-geng.Ring-opening Copolymerization of L-Lactide and δ-Valerolactone Catalyzed by Benzoxazolyl Urea Catalyst/MTBD[J].ACTA POLYMERICA SINICA,2022,53(05):488-496.
Ji Chen-lin,Jie Su-yun,Li Bo-geng.Ring-opening Copolymerization of L-Lactide and δ-Valerolactone Catalyzed by Benzoxazolyl Urea Catalyst/MTBD[J].ACTA POLYMERICA SINICA,2022,53(05):488-496. DOI: 10.11777/j.issn1000-3304.2021.21400.
Ring-opening Copolymerization of L-Lactide and δ-Valerolactone Catalyzed by Benzoxazolyl Urea Catalyst/MTBD
) catalyst was very efficient for the solution ring-opening polymerization of L-lactide (L-LA) in the presence of benzyl alcohol. On the basis of homopolymerization
the solution ring-opening copolymerization of L-LA and
δ
-valerolactone (
δ
-VL) was investigated and the PLLA-
co
-PVL random and PLLA-
b
-PVL block copolymers were prepared
via
varying the feeding strategy (premixing or sequential feeding) and the feeding ratio of two monomers. The sequence structure of copolymers was analyzed by
1
H- and
13
C-NMR spectra and the copolymer compositions in the copolymers were in consistence with the feeding ratio of two monomers. The randomness
R
of the random copolymers prepared
via
premixing two monomers was abo
ut 0.5
which was between completely random and block copolymers. The thermal properties were tested by the differential calorimetry scanning (DSC). When the contents of two monomers in the copolymers were relatively close
no melting peak could be observed in the DSC curves and the samples was rubbery at room temperature as an amorphous polymer. As the content of VL segments decreased
the glass transition temperature of random copolymers increased. In addition
the block copolymers (PLLA-
b
-PVL) were synthesized through the "one-pot method" and "chain extension method". The sequence of segments was controllable and the randomness
Gruber P R, Drumright R E, Henton D E. Adv Mater, 2000, 12(23): 1841-1846
Södergård A, Stolt M. Prog Polym Sci, 2002, 27(6): 1123-1163. doi:10.1016/s0079-6700(02)00012-6http://dx.doi.org/10.1016/s0079-6700(02)00012-6
Gupta B, Revagade N, Hilborn J. Prog Polym Sci, 2007, 32(4): 455-482. doi:10.1016/j.progpolymsci.2007.01.005http://dx.doi.org/10.1016/j.progpolymsci.2007.01.005
Gupta A P, Kumar V. Eur Polym J, 2007, 43(10): 4053-4074. doi:10.1016/j.eurpolymj.2007.06.045http://dx.doi.org/10.1016/j.eurpolymj.2007.06.045
Lim L T, Auras R, Rubino M. Prog Polym Sci, 2008, 33(8): 820-852. doi:10.1016/j.progpolymsci.2008.05.004http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004
Saeed W, Al-Odayni A, Alghamdi A. Crystals, 2018, 8: 452. doi:10.3390/cryst8120452http://dx.doi.org/10.3390/cryst8120452
Aubin M, Prud'homme R E. Polymer, 1981, 22(9): 1223-1226. doi:10.1016/0032-3861(81)90137-3http://dx.doi.org/10.1016/0032-3861(81)90137-3
Cui J, Kratz K, Heuchel M, Hiebl B, Lendlein A. Polym Adv Technol, 2011, 22: 180-189. doi:10.1002/pat.1733http://dx.doi.org/10.1002/pat.1733
Lipik V T, Kong J F, Chattopadhyay S, Widjaja L K, Liow S S, Venkatraman S S, Abadie M J M. Acta Biomater, 2010, 6: 4261-4270. doi:10.1016/j.actbio.2010.05.027http://dx.doi.org/10.1016/j.actbio.2010.05.027
Lu X, Cai W, Gao Z. J Appl Polym Sci, 2008, 108(2): 1109-1115. doi:10.1002/app.27703http://dx.doi.org/10.1002/app.27703
Tsutsumi C, Fukukawa N, Sakafuji J, Oro K, Hata K, Nakayama Y, Shiono T. J Appl Polym Sci, 2011, 121(3): 1431-1441. doi:10.1002/app.33646http://dx.doi.org/10.1002/app.33646
Jung Y, Park M S, Lee J W, Kim Y H, Kim S H, Kim S H. Biomaterials, 2008, 29(35): 4630-4636. doi:10.1016/j.biomaterials.2008.08.031http://dx.doi.org/10.1016/j.biomaterials.2008.08.031
Wang J, Wang J, Qiu S, Chen W, Cheng L, Du W, Wang J, Han L, Song L, Hu Y. Colloids Surf B, 2022, 209(2): 112209. doi:10.1016/j.colsurfb.2021.112209http://dx.doi.org/10.1016/j.colsurfb.2021.112209
Duan R, Wang Y, Zhang Y, Wang Z, Du F, Du B, Su D, Liu L, Li X, Zhang Q. ACS Omega, 2021, 6(28): 18300-18313. doi:10.1021/acsomega.1c02190http://dx.doi.org/10.1021/acsomega.1c02190
Fernández J, Larrañaga A, Etxeberria A, Wang W, Sarasua J R. J Biomed Mater Res Part A, 2014, 102A: 3573-3584. doi:10.1002/jbm.a.35036http://dx.doi.org/10.1002/jbm.a.35036
Li Juan(李娟), Du Fanfan(杜凡凡), Feng Rui(冯锐), Hu Qian(胡倩), Jie Suyun(介素云), Li Bogeng(李伯耿). Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 39(6): 2397-1304. doi:10.7503/cjcu20170792http://dx.doi.org/10.7503/cjcu20170792
Fernández J, Larrañaga A, Etxeberria A, Sarasua J R. J Mech Behav Biomed Mater, 2014, 35: 39-50. doi:10.1016/j.jmbbm.2014.03.013http://dx.doi.org/10.1016/j.jmbbm.2014.03.013
Fernández J, Etxeberria A, Sarasua J R. J Mech Behav Biomed Mater, 2012, 9: 100-112. doi:10.1016/j.jmbbm.2012.01.003http://dx.doi.org/10.1016/j.jmbbm.2012.01.003
Couffin A, Martín-Vaca B, Bourissou D, Navarro C. Polym Chem, 2014, 5(1): 161-168. doi:10.1039/c3py00935ahttp://dx.doi.org/10.1039/c3py00935a
Wang X, Liu J, Xu S, Xu J, Pan X, Liu J, Cui S, Li Z, Guo K. Polym Chem, 2016, 7(41): 6297-6308. doi:10.1039/c6py01107ahttp://dx.doi.org/10.1039/c6py01107a
Makiguchi K, Kikuchi S, Yanai K, Ogasawara Y, Sato S, Satoh T, Kakuchi T. J Polym Sci, Part A: Polym Chem, 2014, 52(7): 1047-1054. doi:10.1002/pola.27089http://dx.doi.org/10.1002/pola.27089
Ji C, Jie S, Braunstein P, Li B G. Catal Sci Technol, 2020, 10(22): 7555-7565. doi:10.1039/d0cy01551bhttp://dx.doi.org/10.1039/d0cy01551b
Thomas C, Bibal B. Green Chem, 2014, 16(4): 1687-1699. doi:10.1039/c3gc41806ehttp://dx.doi.org/10.1039/c3gc41806e
Pothupitiya J U, Dharmaratne N U, Jouaneh T M M, Fastnacht K V, Coderre D N, Kiesewetter M K. Macromolecules, 2017, 50(22): 8948-8954. doi:10.1021/acs.macromol.7b01991http://dx.doi.org/10.1021/acs.macromol.7b01991
Lin B, Waymouth R M. Macromolecules, 2018, 51(8): 2932-2938. doi:10.1021/acs.macromol.8b00540http://dx.doi.org/10.1021/acs.macromol.8b00540
Yin Hongjun(殷宏军), Zou Benshu(邹本书), Xiang Shuangfei(向双飞), Li Xiao(黎晓), Shi Dongjian(施冬健), Li Hongmei(李红梅), Dong Weifu(东为富), Ni Zhongbin(倪忠斌), Chen Mingqing(陈明清). Plastics(塑料), 2013, 42(3): 9-11. doi:10.3969/j.issn.1001-9456.2013.03.003http://dx.doi.org/10.3969/j.issn.1001-9456.2013.03.003
Homo- and Copolymerization of 4-Methyl-1-pentene and 1-Hexene with Pyridylamido Hafnium Catalyst
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Preparation of Biorenewable PLA/Lignin-g-polyester Composites and the Effects of Lignin-g-polyester Structures on Composite Properties
Progress in Anionic Ring-opening Homo/Co-polymerization of Cyclosiloxanes
Related Author
Ling-zhi Wang
Xing-qiang Ni
He Ren
Yu-xin Gao
Hai-yang Gao
Zhi-qiang Fan
Zhi-sheng Fu
Hao Zhang
Related Institution
Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University
PetroChina Lanzhou Petrochemical Yulin Chemical Co., Ltd.
Daqing Chemical Engineering Research Center, Petrochemical Research Institute, China National Petroleum Corporation Ltd
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University