Fan Cong-xiao,Liang Jia-xin,Ye Shu-xian,et al.Study of the Synthesis of CO2/Propylene Epoxide/Phthalic Anhydride Terpolymers with Different Sequence Structures and Their Properties[J].ACTA POLYMERICA SINICA,2022,53(05):497-504.
Fan Cong-xiao,Liang Jia-xin,Ye Shu-xian,et al.Study of the Synthesis of CO2/Propylene Epoxide/Phthalic Anhydride Terpolymers with Different Sequence Structures and Their Properties[J].ACTA POLYMERICA SINICA,2022,53(05):497-504. DOI: 10.11777/j.issn1000-3304.2021.21402.
Study of the Synthesis of CO2/Propylene Epoxide/Phthalic Anhydride Terpolymers with Different Sequence Structures and Their Properties
is a promising methodology for recycling industrial waste gas
and the conservation of environment and energy. Propylene oxide (PO) has been commonly used to copolymerize with CO
2
to yield biodegradable poly(propylene carbonate) (PPC). PPC exhibits excellent transparency
low water and oxygen permeability as well as high flexibility. But low glass transition temperature (
T
g
) limited its practical applications. In recent years
the copolymerization of PO
CO
2
with phthalic anhydride (PA) provides a robust and economical method to improve PPC's thermal and mechanical performance. In this study
to explore the relationship between the sequence structure and the properties of CO
2
/PO/PA terpolymer (PPC-P)
PPC-P terpolymers with similar polyester (PE) content and molecular weight but different sequence structures (block
tapered and random) were synthesized through one-pot two-step method or one-pot one-step method using non-metallic catalytic system (TEB/PPNCl). The effects of polymerization temperature and reaction time on the composition and molecular weight of the PPC-P were systematically studied
and the PE content and molecular weight of all the terpolymers were controlled to be around 45% and 5.0×10
4
respectively for comparison. The typical sequence structure characteristics of the terpolymers were proven by
1
H-NMR. Differential scanning calorimetry (DSC)
thermogravimetric analysis (TGA) and tensile test were used to characterize the thermal and mechanical properties of the PPC-P terpolymers. The block terpolymer shows two g
lass-transition temperature (
T
g
) (43 and 54 ℃)
while the tapered and random terpolymer has only one
T
g
(51
50 ℃). The
T
d5
of the block terpolymer (263 ℃) is lower than that of the tapered and random terpolymer (around 273 ℃)
indicating the poorer thermostability of block terpolymer. The three terpolymers with different sequence structures have similar tensile strength (around 35 MPa)
all belonging to hard and brittle materials.
关键词
二氧化碳基聚合物序列结构热学性能力学性能
Keywords
CO2 based copolymerSequence structureThermal propertiesMechanical properties
references
Poland S J, Darensbourg D J. Green Chem, 2017, 19(21): 4990-5011. doi:10.1039/c7gc02560bhttp://dx.doi.org/10.1039/c7gc02560b
Kozak C M, Ambrose K, Anderson T S. Coordin Chem Rev, 2018, 376: 565-587. doi:10.1016/j.ccr.2018.08.019http://dx.doi.org/10.1016/j.ccr.2018.08.019
Darensbourg D J. Inorg Chem Front, 2017, 4(3): 412-419. doi:10.1039/c7qi00013hhttp://dx.doi.org/10.1039/c7qi00013h
Kamphuis A J, Picchioni F, Pescarmona P P. Green Chem, 2019, 21(3): 406-448. doi:10.1039/c8gc03086chttp://dx.doi.org/10.1039/c8gc03086c
Xu Y, Lin L, Xiao M, Wang S, Smith A T, Sun L, Meng Y. Prog Polym Sci, 2018, 80: 163-182. doi:10.1016/j.progpolymsci.2018.01.006http://dx.doi.org/10.1016/j.progpolymsci.2018.01.006
Zhang X, Fevre M, Jones G O, Waymouth R M. Chem Rev, 2018, 118(2): 839-885. doi:10.1021/acs.chemrev.7b00329http://dx.doi.org/10.1021/acs.chemrev.7b00329
Darensbourg D J, Mackiewicz R M, Phelps A L, Billodeaux D R. Acc Chem Res, 2004, 37(11): 836-844. doi:10.1021/ar030240uhttp://dx.doi.org/10.1021/ar030240u
Zhang D, Boopathi S K, Hadjichristidis N, Gnanou Y, Feng X. J Am Chem Soc, 2016, 138(35): 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Chen Z, Yang J L, Lu X Y, Hu L F, Cao X H, Wu G P, Zhang X H. Polym Chem, 2019, 10(26): 3621-3628. doi:10.1039/c9py00398chttp://dx.doi.org/10.1039/c9py00398c
Wang L, Zhang J, Zhao N, Ren C, Liu S, Li Z. ACS Macro Lett, 2020, 9(9): 1398-1402. doi:10.1021/acsmacrolett.0c00564http://dx.doi.org/10.1021/acsmacrolett.0c00564
Yang G W, Xu C K, Xie R, Zhang Y Y, Zhu X F, Wu G P. J Am Chem Soc, 2021, 143(9): 3455-3465. doi:10.1021/jacs.0c12425http://dx.doi.org/10.1021/jacs.0c12425
Yang G W, Zhang Y Y, Xie R, Wu G P. J Am Chem Soc, 2020, 142(28): 12245-12255. doi:10.1021/jacs.0c03651http://dx.doi.org/10.1021/jacs.0c03651
Zhang J, Wang L, Liu S, Li Z. Angew Chem Int Ed Engl, 2022, 61(4): e202111197. doi:10.1002/anie.202116982http://dx.doi.org/10.1002/anie.202116982
Yang G W, Zhang Y Y, Wu G P. Acc Chem Res, 2021, 54(23): 4434-4448. doi:10.1021/acs.accounts.1c00620http://dx.doi.org/10.1021/acs.accounts.1c00620
Dai Y, Zhang X, Xia F. Macromol Rapid Commun, 2017, 38(19): 1700357. doi:10.1002/marc.201700357http://dx.doi.org/10.1002/marc.201700357
Longo J M, Sanford M J, Coates G W. Chem Rev, 2016, 116(24): 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Chen T T D, Zhu Y, Williams C K. Macromolecules, 2018, 51(14): 5346-5351. doi:10.1021/acs.macromol.8b01224http://dx.doi.org/10.1021/acs.macromol.8b01224
Darensbourg D J, Poland R R, Escobedo C. Macromolecules, 2012, 45(5): 2242-2248. doi:10.1021/ma2026385http://dx.doi.org/10.1021/ma2026385
Jeon J Y, Eo S C, Varghese J K, Lee B Y. Beilstein J Org Chem, 2014, 10: 1787-1795. doi:10.3762/bjoc.10.187http://dx.doi.org/10.3762/bjoc.10.187
Xie R, Zhang Y Y, Yang G W, Zhu X F, Li B, Wu G P. Angew Chem Int Ed Engl, 2021, 60(35): 19253-19261. doi:10.1002/anie.202104981http://dx.doi.org/10.1002/anie.202104981
Liang J, Ye S, Wang W, Fan C, Wang S, Han D, Liu W, Cui Y, Hao L, Xiao M, Meng Y. J CO2 Util, 2021, 49: 101558. doi:10.1016/j.jcou.2021.101558http://dx.doi.org/10.1016/j.jcou.2021.101558
Chen Y, Liu S, Zhao J, Pahovnik D, Žagar E, Zhang G. ACS Macro Lett, 2019, 8(12): 1582-1587. doi:10.1021/acsmacrolett.9b00789http://dx.doi.org/10.1021/acsmacrolett.9b00789