Superhydrophobic micro-/nanostructured surfaces are widely used in the fields of self-cleaning
anti-icing
anti-bacterial and flexible sensor
but there are still some challenges in the preparation methods of these surfaces. In this work
the polypropylene (PP) surfaces with nanostructure arrays were prepared using the hot compression molding with anodic aluminum oxide (AAO) templates. With the ultrasonic-assisted treatment
the nanostructure was transformed onto micro-/nanostructure due to the ultrasonic cavitation effect. The superhydrophobic property of micro-/nanostructured surface was improved after ultrasonic treatment
the contact angle increased from 152.3° to 160.0°
the rolling angle decreased from 11.5° to 1.8°
and the surface adhesion decreased from 75 μN to 38 μN. Moreover
the self-cleaning performance of the micro-/nanostructured PP surface was also better than that of the nanostructured PP surface. The template method combining with the ultrasonic-assisted treatment is convenient
cheap
and effective in the preparation of superhydrophobic micro-/nanostructured surfaces
expecting promising applications in industrial production.
Arzt E, Quan H C, McMeeking R M, Hensel R. Prog Mater Sci, 2021, 120: 100823. doi:10.1016/j.pmatsci.2021.100823http://dx.doi.org/10.1016/j.pmatsci.2021.100823
Wang B, Zhou X C, Guo Z G, Liu W M. Nano Today, 2021, 40: 101283. doi:10.1016/j.nantod.2021.101283http://dx.doi.org/10.1016/j.nantod.2021.101283
Sun Y H, Guo, Z G. Nanoscale Horiz, 2019, 4(1): 52-76. doi:10.1039/c8nh00223ahttp://dx.doi.org/10.1039/c8nh00223a
Yu C M, Sasic S, Liu K, Salameh S, Ras R H A, van Ommen J R. Chem Eng Res Des, 2020, 155: 48-65. doi:10.1016/j.cherd.2019.11.038http://dx.doi.org/10.1016/j.cherd.2019.11.038
Liu J G, Fang X T, Zhu C Y, Xing X, Cui G, Li Z L. Colloid Surf A-Physicochem Eng Asp, 2020, 607: 125498. doi:10.1016/j.colsurfa.2020.125498http://dx.doi.org/10.1016/j.colsurfa.2020.125498
Xie Z T, Wang H, Geng Y, Li M, Deng Q Y, Tian Y, Chen R, Zhu X, Liao Q. ACS Appl Mater Interfaces, 2021, 13(40): 48308-48321. doi:10.1021/acsami.1c15028http://dx.doi.org/10.1021/acsami.1c15028
Zhao Shurui(赵书瑞), Shen Ting(申婷), Li Yutang(李玉堂), Deng Ran(邓然), Yang Haocheng(杨皓程), Li Weihua(李伟华). Acta Polymerica Sinica(高分子学报), 2021, 52(12): 1622-1631. doi:10.11777/j.issn1000-3304.2021.21116http://dx.doi.org/10.11777/j.issn1000-3304.2021.21116
Gu J C, Ji L T, Xiao P, Zhang C, Li J, Yan L K, Chen T. ACS Appl Mater Interfaces, 2021, 13(31): 36679-36696. doi:10.1021/acsami.1c07737http://dx.doi.org/10.1021/acsami.1c07737
Qin Fengming(秦凤鸣), Li Xiangyu(李香玉), Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2021, 52(9): 1165-1173. doi:10.11777/j.issn1000-3304.2021.21038http://dx.doi.org/10.11777/j.issn1000-3304.2021.21038
Gao Y N, Wang Y, Yue T N, Weng Y X, Wang M. J Colloid Interface Sci, 2021, 582: 112-123. doi:10.1016/j.jcis.2020.08.037http://dx.doi.org/10.1016/j.jcis.2020.08.037
Li H, Zhu Y J. Energy Environ Mater, 2021, 4(4): 544-561. doi:10.1002/eem2.12158http://dx.doi.org/10.1002/eem2.12158
Erbil H Y. Langmuir, 2020, 36(10): 2493-2509. doi:10.1021/acs.langmuir.9b03908http://dx.doi.org/10.1021/acs.langmuir.9b03908
Parvate S, Dixit P, Chattopadhyay S. J Phys Chem B, 2020, 124(8): 1323-1360. doi:10.1021/acs.jpcb.9b08567http://dx.doi.org/10.1021/acs.jpcb.9b08567
Brock L, Sheng J. Micromachines, 2020, 11(1): 46. doi:10.3390/mi11010046http://dx.doi.org/10.3390/mi11010046
Ho A Y Y, Van E L, Lim C T, Natarajan S, Elmouelhi N, Low H Y, Vyakarnam M, Cooper K, Rodriguez I. J Polym Sci Part B: Polym Phys, 2014, 52(8): 603-609. doi:10.1002/polb.23461http://dx.doi.org/10.1002/polb.23461
Zhang Y M, Liu Z B, Chen A F, Wang Q K, Zhang J J, Zhao C, Xu J B, Yang W T, Peng Y J, Zhang Z R. J Phys Chem C, 2020, 124(11): 6197-6205. doi:10.1021/acs.jpcc.9b12038http://dx.doi.org/10.1021/acs.jpcc.9b12038
Li X H, Ni S Y, Zhou X P. J Nanosci Nanotechnol, 2015, 15(2): 1725. doi:10.1166/jnn.2015.9025http://dx.doi.org/10.1166/jnn.2015.9025
Mason T J. Ultrason Sonochem, 2016, 29: 519-523. doi:10.1016/j.ultsonch.2015.05.004http://dx.doi.org/10.1016/j.ultsonch.2015.05.004
Lv Z, Hou R G, Zhang Z W, Fan Z H. Int J Adv Manuf Technol, 2020, 111(9): 2911-2918. doi:10.1007/s00170-020-06275-whttp://dx.doi.org/10.1007/s00170-020-06275-w
Soyama H. Wear, 2013, 297(1): 895-902. doi:10.1016/j.wear.2012.11.008http://dx.doi.org/10.1016/j.wear.2012.11.008
Chu S Z, Wada K, Inoue S, Isogai M, Katsuta Y, Yasumori A. J Electrochem Soc, 2006, 153(9): B384. doi:10.1149/1.2218822http://dx.doi.org/10.1149/1.2218822
Ji D Y, Lee J W, Hwang W, Lee K Y. Int J Heat Mass Tran, 2019, 134: 286. doi:10.1016/j.ijheatmasstransfer.2019.01.040http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.01.040
Extrand C W. Langmuir, 2003, 19(9): 3793-3796. doi:10.1021/la0268350http://dx.doi.org/10.1021/la0268350