Huang Yan-qin,Sheng Kuang,Ni Hui-lin,et al.Effects of Solvent on Helical Wrapping of Single-walled Carbon Nanotubes by Poly(p-phenyleneethynylene-alt-m-phenyleneethynylene)[J].ACTA POLYMERICA SINICA,2022,53(06):683-690.
Huang Yan-qin,Sheng Kuang,Ni Hui-lin,et al.Effects of Solvent on Helical Wrapping of Single-walled Carbon Nanotubes by Poly(p-phenyleneethynylene-alt-m-phenyleneethynylene)[J].ACTA POLYMERICA SINICA,2022,53(06):683-690. DOI: 10.11777/j.issn1000-3304.2022.22009.
Effects of Solvent on Helical Wrapping of Single-walled Carbon Nanotubes by Poly(p-phenyleneethynylene-alt-m-phenyleneethynylene)
-phenyleneethynylene)s (meta-PPEs) can wrap single-walled carbon nanotubes (SWCNTs) helicall
y to improve the solubility of SWCNTs and realize highly selective dispersion. In order to deeply understand the formation mechanism of such well-defined supermolecular structure
we prepared the composites of SWCNTs and the cationic water-soluble meta-PPE-N
+
Et
2
Me in DMSO/H
2
O mixed solvents with different ratios. The effects of polymer structure and composition of mixed solvents on the morphology and stability of the composite structure were deeply explored. Studies on the ultraviolet-visible-near infrared absorption spectroscopy
fluorescence spectroscopy
transmission electron microscopy
Raman spectroscopy and infrared spectroscopy showed that
when the ratio of DMSO was 70%
the polymer exhibited a sudden change from random coil to helical conformation. At this time
the driving force to self-assemble into helical conformation was relatively large
so the polymer wrapped SWCNTs helically in the process of forming a helical hydrophobic cavity itself
and the hydrophobic effect and
π
-
π
interaction were further enhanced to form a stable composite. However
no obvious helical wrapping supermolecular structure was formed in the mixed solvents with other ratios. These results will provide some theoretical guidance for the controllable modification and application improvement of SWCNTs.
Negri V, Pacheco-Torres J, Calle D, Lopez-Larrubia P. Top Curr Chem, 2020, 378(1): 15. doi:10.1007/s41061-019-0278-8http://dx.doi.org/10.1007/s41061-019-0278-8
Camilli L, Passacantando M. Chemosensors, 2018, 6(4): 62. doi:10.3390/chemosensors6040062http://dx.doi.org/10.3390/chemosensors6040062
Chen Y, Chen H T, Gui H, Liu J, Liu B L, Zhou C W. Semicond Sci Tech, 2014, 29(7): 073001. doi:10.1088/0268-1242/29/7/073001http://dx.doi.org/10.1088/0268-1242/29/7/073001
Wang G H, Zhang F, Tian R, Zhang L W, Fu G F, Yang L L, Zhu L. ACS Appl Mater Interfaces, 2016, 8(8): 5608-5617. doi:10.1021/acsami.5b12400http://dx.doi.org/10.1021/acsami.5b12400
Wang D Q, Meng L J, Fei Z F, Hou C, Long J G, Zeng L, Dyson P J, Huang P. Nanoscale, 2018, 10(18): 8536-8546. doi:10.1039/c8nr00663fhttp://dx.doi.org/10.1039/c8nr00663f
Li Z X, de Barros A L B, Soares D C F, Moss S N, Alisaraie L. Int J Pharm, 2017, 524(1-2): 41-54. doi:10.1016/j.ijpharm.2017.03.017http://dx.doi.org/10.1016/j.ijpharm.2017.03.017
Zhao Y L, Stoddart J F. Accounts Chem Res, 2009, 42(8): 1161-1171. doi:10.1021/ar900056zhttp://dx.doi.org/10.1021/ar900056z
Samanta S K, Fritsch M, Scherf U, Gomulya W, Bisri S Z, Loi M A. Acc Chem Res, 2014, 47(8): 2446-2456. doi:10.1021/ar500141jhttp://dx.doi.org/10.1021/ar500141j
Zhang S, Bunz U H F, Bucknall D G. J Compos Sci, 2021, 5(6): 158. doi:10.3390/jcs5060158http://dx.doi.org/10.3390/jcs5060158
Wang H L, Bao Z N. Nano Today, 2015, 10(6): 737-758. doi:10.1016/j.nantod.2015.11.008http://dx.doi.org/10.1016/j.nantod.2015.11.008
Jakubka F, Schiessl S P, Martin S, Englert J M, Hauke F, Hirsch A, Zaumseil J. ACS Macro Lett, 2012, 1(7): 815-819. doi:10.1021/mz300147ghttp://dx.doi.org/10.1021/mz300147g
Yang Y, Li R M, Wang W, Xu Z W, Xie G H, Lu Z Q, Li J J, Song L P, Li W S. Chin J Org Chem, 2020, 40(10): 3249-3261. doi:10.6023/cjoc202006019http://dx.doi.org/10.6023/cjoc202006019
Aumaitre C, Fong D, Adronov A, Morin J F. Polym Chem, 2019, 10(47): 6440-6446. doi:10.1039/c9py01603ahttp://dx.doi.org/10.1039/c9py01603a
Gifford B J, Weight B M, Kilina S. J Phys Chem C, 2019, 123(40): 24807-24817. doi:10.1021/acs.jpcc.9b04869http://dx.doi.org/10.1021/acs.jpcc.9b04869
Thomas S W, Joly G D, Swager T M. Chem Rev, 2007, 107(4): 1339-1386. doi:10.1021/cr0501339http://dx.doi.org/10.1021/cr0501339
Zhu C L, Liu L B, Yang Q, Lv F T, Wang S. Chem Rev, 2012, 112(8): 4687-4735. doi:10.1021/cr200263whttp://dx.doi.org/10.1021/cr200263w
D'Olieslaeger L, Braekenb Y, Cheruku S, Smits J, Ameloot M, Vanderzande D, Maes W, Ethirajan A. J Colloid Interface Sci, 2017, 504: 527-537. doi:10.1016/j.jcis.2017.05.072http://dx.doi.org/10.1016/j.jcis.2017.05.072
Kang Y K, Lee O S, Deria P, Kim S H, Park T H, Bonnell D A, Saven J G, Therien M J. Nano Lett, 2009, 9(4): 1414-1418. doi:10.1021/nl8032334http://dx.doi.org/10.1021/nl8032334
Chen Y S, Xu Y Q, Wang Q M, Gunasinghe R N, Wang X Q, Pang Y. Small, 2013, 9(6): 870-875. doi:10.1002/smll.201202103http://dx.doi.org/10.1002/smll.201202103
Von Bargen C D, MacDermaid C M, Lee O S, Deria P, Therien M J, Saven J G. J Phys Chem B, 2013, 117(42): 12953-12965. doi:10.1021/jp402140thttp://dx.doi.org/10.1021/jp402140t
Ezzeddine A, Chen Z, Schanze K S, Khashab N M. ACS Appl Mater Interfaces, 2015, 7(23): 12903-12913. doi:10.1021/acsami.5b02540http://dx.doi.org/10.1021/acsami.5b02540
Huang Y Q, Zhong Y Y, Zhang R, Zhao Y K, Liu X F, Zhang G W, Fan Q L, Wang L H, Huang W. Polymer, 2016, 102: 143-152. doi:10.1016/j.polymer.2016.08.044http://dx.doi.org/10.1016/j.polymer.2016.08.044
Saebo S, Almlof J , Boggs J E, Stark J G. J Mol Struct-Theochem, 1989, 59: 361-373. doi:10.1016/0166-1280(89)85066-3http://dx.doi.org/10.1016/0166-1280(89)85066-3
Bunz U H F. Macromol Rapid Commun, 2009, 30(9-10): 772-805. doi:10.1002/marc.200800775http://dx.doi.org/10.1002/marc.200800775
Huang Y Q, Fan Q L, Liu X F, Fu N N, Huang W. Langmuir, 2010, 26(24): 19120-19128. doi:10.1021/la103394chttp://dx.doi.org/10.1021/la103394c
Fu Chuanlong(伏传龙). Study on Functionalization of Single-walled Carbon Nanotubes(单壁碳纳米管功能化的研究). Doctoral Dissertation of Shanghai Jiao Tong University(上海交通大学博士学位论文), 2008
Tan C, Pinto M R, Kose M E, Ghiviriga I, Schanze K S. Adv Mater, 2004, 16, 1208-1212. doi:10.1002/adma.200306711http://dx.doi.org/10.1002/adma.200306711
Hwang J Y, Nish A, Doig J, Douven S, Chen C W, Chen L C, Nicholas R J. J Am Chem Soc, 2008, 130(11): 3543-3553. doi:10.1021/ja0777640http://dx.doi.org/10.1021/ja0777640
Swierczewska M, Choi K Y, Mertz E L, Huang X L, Zhang F, Zhu L, Yoon H Y, Park J H, Bhirde A, Lee S, Chen X Y. Nano Lett, 2012, 12(7): 3613-3620. doi:10.1021/nl301309ghttp://dx.doi.org/10.1021/nl301309g
Yang J, Lee J, Lee J, Yi W. Diam Relat Mat, 2020, 101: 107554. doi:10.1016/j.diamond.2019.107554http://dx.doi.org/10.1016/j.diamond.2019.107554
ZhaoHui(赵辉). Synthesis of Functionalized Poly(phenylacetylene) and Their Hybrids with Carbon Nanotubes(功能化聚苯乙炔的合成及其与碳纳米管的复合). Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2010
In situ Preparation and Properties of Poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene)/Ag Nanocomposites via Cationic Polymerization
In situ Polymerization of PEDOT: π-Conjugated Polyelectrolyte and Application as Hole Transport Layer in Polymer Solar Cells
Molecular Dynamics Simulations of Graphene/Polyethylene and Its Tensile Properties
Related Author
Deng Zhou
Ming Li
Yi-xian Wu
Hang-tian Zhang
Qi Zhang
Meng-juan Wei
Xu Hai-tao
Tan Li-cheng
Related Institution
Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, Hubei Collaborative Innovation Center for Advanced, College of Chemistry and Chemical Engineering, Hubei University
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology
College of Chemistry
Jiangxi Provincial Key Laboratory of New Energy Chemistry/Institute of Polymers, Nanchang University
Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong (China University of Petroleum (East China))