浏览全部资源
扫码关注微信
1.青岛大学材料科学与工程学院 生物多糖纤维成形与生态纺织国家重点实验室 青岛 266071
2.上海交通大学化学化工学院 变革性分子前沿科学中心 上海 200240
Ye-qiang Tan, E-mail: tanyeqiang@qdu.edu.cn
Wang-zhang Yuan, E-mail: wzhyuan@sjtu.edu.cn
Published:20 August 2022,
Published Online:06 June 2022,
Received:20 January 2022,
Accepted:09 March 2022
移动端阅览
张永芝,王倩,赵子豪等.葡聚糖的光致发光性质及机理研究[J].高分子学报,2022,53(08):906-912.
Zhang Yong-zhi,Wang Qian,Zhao Zi-hao,et al.Photoluminescence and Luminescent Mechanism of Dextran[J].ACTA POLYMERICA SINICA,2022,53(08):906-912.
张永芝,王倩,赵子豪等.葡聚糖的光致发光性质及机理研究[J].高分子学报,2022,53(08):906-912. DOI: 10.11777/j.issn1000-3304.2022.22023.
Zhang Yong-zhi,Wang Qian,Zhao Zi-hao,et al.Photoluminescence and Luminescent Mechanism of Dextran[J].ACTA POLYMERICA SINICA,2022,53(08):906-912. DOI: 10.11777/j.issn1000-3304.2022.22023.
天然产物具有良好的生物相容性和环境友好性,研究此类非典型发光化合物对发光机理的理解以及绿色环保型发光材料的开发具有重要意义. 基于此,本文研究了天然产物葡聚糖的光致发光性质与发光机理. 结果表明,葡聚糖发光具有浓度增强、激发波长依赖性、分子量依赖性及聚集诱导发光等特性,其浓溶液在低温下表现出明显的激发波长依赖性的余辉,并且高分子量葡聚糖粉末还具有超长寿命室温磷光(p-RTP)发射. 这些现象可用簇聚诱导发光(CTE)机理进行合理解释. 随着葡聚糖浓度的增加或形成聚集体,氧原子簇聚形成不同的离域扩展的氧簇,其在O···O相互作用、氢键、分子链缠结等协同作用下构象刚硬化,因此能够受激发射. 经压片后,葡聚糖片呈现更明显的长余辉,这是由于压片后分子堆积更为紧密,分子间相互作用增强,从而减少了分子运动引起的非辐射跃迁及空气中氧气和水分子对三线态激子的猝灭.
Natural products have good biocompatibility and environmental friendliness. Herein
the photoluminescence (PL) of dextran aqueous solutions at different temperatures as well as that of their solid powders with different molecular weights is systematically investigated. It is found that dextran demonstrates the characteristics of concentration-enhanced emission and aggregation-induced emission (AIE). In addition
strong blue and green phosphorescence are observed after ceasing the 312 and 365 nm UV light at 77 K in concentrated solutions
respectively
featuring excitation-dependent characteristics. With the increment of the molecular weights (20 kDa
70 kDa
150 kDa
500 kDa)
the quantum efficiency of dextran powders is progressively increased (1.6%
2.4%
3.2%
3.6%). Furthermore
the dextran solid powders with high molecular weights (150 kDa
500 kDa) even exhibit distinct persistent room temperature phosphorescence (p-RTP). Dextran tablets readily offer much more conspicuous afterglow with comparison to those of their powder counterparts. These phenomena can be well rationalized by the clustering-triggered emission (CTE) mechanism. Namely
in dilute so
lutions
polymer chains are well stretched and difficult to be excited owing to their short absorption. However
with the increasing concentration of dextran or the formation of aggregates
the clustering of oxygen atoms results in diverse emissive clusters with extended delocalization
which can get excited to emit with rigidified conformations induced by synergistic effect of O···O contacts
hydrogen bonds
chain entanglements
etc.
The presence of varying emissive species with diverse electronic conjugation results in the excitation-dependent emission. Moreover
triplets are stabilized on account of the impeded molecular motions and decreased oxygen and moisture quenching
thus favoring p-RTP emissions. The study of dextran is conducive to gaining deeper insights into CTE mechanism and to develop environment-friendly luminescent materials.
葡聚糖光致发光磷光簇聚诱导发光
DextranPhotoluminescencePhosphorescenceClustering-triggered emission
Chen X, Luo W, Ma H, Peng Q, Yuan W Z, Zhang Y. Sci China Chem, 2018, 61(3): 351-359. doi:10.1007/s11426-017-9114-4http://dx.doi.org/10.1007/s11426-017-9114-4
Yang W, Pan C Y, Liu X Q, Wang J. Biomacromolecules, 2011, 12(5): 1523-1531. doi:10.1021/bm1014816http://dx.doi.org/10.1021/bm1014816
Zhang Z, Zhang H, Kang M, Li N, Wang D, Tang B Z. Sci China Chem, 2021, 64(11): 1990-1998. doi:10.1007/s11426-021-1067-3http://dx.doi.org/10.1007/s11426-021-1067-3
Bai L, Yan H, Bai T, Feng Y, Zhao Y, Ji Y, Feng W, Zhao Y, Ji Y, Feng W, Lu T, Nie Y. Biomacromolecules, 2019, 20(11): 4230-4240. doi:10.1021/acs.biomac.9b01217http://dx.doi.org/10.1021/acs.biomac.9b01217
Wang G, Fu L, Walker A, Chen X, Lovejoy D B, Hao M, Lee A, Chung R, Rizos H, Irvine M, Zheng M, Liu X H, Lu Y Q, Shi B Y. Biomacromolecules, 2019, 20(5): 2148-2158. doi:10.1021/acs.biomac.9b00494http://dx.doi.org/10.1021/acs.biomac.9b00494
Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K Y, Tan Y Q, Gong Y Y, Zhang Y M, Yuan W Z. Angew Chem Int Ed, 2019, 58(36): 12667-12673. doi:10.1002/anie.201906226http://dx.doi.org/10.1002/anie.201906226
Feng Y, Yan H, Ding F, Bai T, Nie Y, Zhao Y, Feng W, Tang B Z. Mater Chem Front, 2020, 4(5): 1375-1382. doi:10.1039/d0qm00075bhttp://dx.doi.org/10.1039/d0qm00075b
Deng J, Wu H, Xie W, Jia H, Xia Z, Wang H. ACS Appl Mater Interfaces, 2021, 13(33): 39967-39975. doi:10.1021/acsami.1c12604http://dx.doi.org/10.1021/acsami.1c12604
Hu Chenxi(胡晨曦), Zhang Xiaohong(张晓红), Qiao Jinliang(乔金樑). Acta Polymerica Sinica(高分子学报), 2021, 52(3): 281-286. doi:10.11777/j.issn1000-3304.2020.20215http://dx.doi.org/10.11777/j.issn1000-3304.2020.20215
Tao S, Zhu S, Feng T, Zheng C, Yang B. Angew Chem Int Ed, 2020, 59(25): 9826-9840. doi:10.1002/anie.201916591http://dx.doi.org/10.1002/anie.201916591
Yang W, Pan C Y. Macromol Rapid Commun, 2009, 30(24): 2096-2101. doi:10.1002/marc.200900482http://dx.doi.org/10.1002/marc.200900482
Wang R B, Yuan W Z, Zhu X Y. Chinese J Polym Sci, 2015, 33(5): 680-687. doi:10.1007/s10118-015-1635-xhttp://dx.doi.org/10.1007/s10118-015-1635-x
Fan Y, Cai Y Q, Fu X B, Yao Y, Chen Y. Polymer, 2016, 107: 154-162. doi:10.1016/j.polymer.2016.11.018http://dx.doi.org/10.1016/j.polymer.2016.11.018
Liu S G, Li N, Ling Y, Kang B H, Geng S, Li N B, Luo H Q. Langmuir, 2016, 32(7): 1881-1889. doi:10.1021/acs.langmuir.6b00201http://dx.doi.org/10.1021/acs.langmuir.6b00201
Zhang Y, Su Y, Wu H, Wang Z, Wang C, Zheng Y, Zheng X, Gao L, Zhou Q, Yang Y, Chen X, Yang C, Zhao Y. J Am Chem Soc, 2021, 143(34): 13675-13685. doi:10.1021/jacs.1c05213http://dx.doi.org/10.1021/jacs.1c05213
Gong Y, Tan Y, Mei J, Zhang Y, Yuan W, Zhang Y, Sun J, Tang B Z. Sci China Chem, 2013, 56(9): 1178-1182. doi:10.1007/s11426-013-4923-8http://dx.doi.org/10.1007/s11426-013-4923-8
Yuan W Z, Zhang Y. J Polym Sci, Part A: Polym Chem, 2017, 55(4): 560-574
Du L L, Jiang B L, Chen X H, Wang Y Z, Zou L M, Liu Y L, Gong Y Y, Wei C, Yuan W Z. Chinese J Polym Sci, 2019, 37(4): 409-415. doi:10.1007/s10118-019-2215-2http://dx.doi.org/10.1007/s10118-019-2215-2
Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan W Z, Zhang Y. Small, 2016, 12(47): 6586-6592. doi:10.1002/smll.201601545http://dx.doi.org/10.1002/smll.201601545
Niu S, Yan H, Chen Z, Li S, Xu P, Zhi X. Polym Chem, 2016, 7(22): 3747-3755. doi:10.1039/c6py00654jhttp://dx.doi.org/10.1039/c6py00654j
Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z. Macromol Rapid Commun, 2018, 39(21): 1800528. doi:10.1002/marc.201800528http://dx.doi.org/10.1002/marc.201800528
Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z. Macromolecules, 2015, 48(1): 64-71. doi:10.1021/ma502160whttp://dx.doi.org/10.1021/ma502160w
Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang B Z. J Mater Chem C, 2017, 5(19): 4775-4779. doi:10.1039/c7tc00868fhttp://dx.doi.org/10.1039/c7tc00868f
Shang C, Zhao Y, Wei N, Zhuo H, Shao Y, Wang H. Macromol Chem Phys, 2019, 220(19): 1900324. doi:10.1002/macp.201900324http://dx.doi.org/10.1002/macp.201900324
Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J. Macromol Rapid Commun, 2017, 38(14): 1700099. doi:10.1002/marc.201700099http://dx.doi.org/10.1002/marc.201700099
Huang Q, Cheng J, Tang Y, Wu Y, Xia D, Zheng Y, Guo M. Macromol Rapid Commun, 2021, 42(14): 2100174. doi:10.1002/marc.202100174http://dx.doi.org/10.1002/marc.202100174
Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, Wang H. Macromol Rapid Commun, 2015, 36(3): 278-285. doi:10.1002/marc.201570011http://dx.doi.org/10.1002/marc.201570011
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang B Z, Zhang Y, Yuan W Z. Biomacromolecules, 2018, 19(6): 2014-2022. doi:10.1021/acs.biomac.8b00123http://dx.doi.org/10.1021/acs.biomac.8b00123
Dong Z, Cui H, Wang Y, Wang C, Li Y, Wang C. Carbohydr Polym, 2020, 227: 115338. doi:10.1016/j.carbpol.2019.115338http://dx.doi.org/10.1016/j.carbpol.2019.115338
Xu L, Liang X, Zhong S, Gao Y, Cui X. ACS Sustain Chem Eng, 2020, 8(51): 18816-18823. doi:10.1021/acssuschemeng.0c07825http://dx.doi.org/10.1021/acssuschemeng.0c07825
Heinze T, Liebert T, Heublein B, Hornig S. Functional Polymers Based on Dextran. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. 199-291
Fang M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z. Mater Chem Front, 2018, 2(11): 2124-2129. doi:10.1039/c8qm00396chttp://dx.doi.org/10.1039/c8qm00396c
Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan W Z. Mater Chem Front, 2019, 3(2): 257-264. doi:10.1039/c8qm00528ahttp://dx.doi.org/10.1039/c8qm00528a
Wang Z, Yuan H, Zhang Y, Wang D, Ju J, Tan Y. J Mater Sci Technol, 2022, 101: 264-284. doi:10.1016/j.jmst.2021.04.039http://dx.doi.org/10.1016/j.jmst.2021.04.039
Wang Z, Zhang Y, Wang C, Zheng X, Zheng Y, Gao L, Yang C, Li Y, Qu L, Zhao Y. Adv Mater, 2020, 32(7): 1907355. doi:10.1002/adma.201907355http://dx.doi.org/10.1002/adma.201907355
CCDC 2155092 contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Chen Xiaohong(陈晓红), Wang Yunzhong(王允中), Zhang Yongming(张永明), Yuan Wangzhang(袁望章). Progress in Chemistry(化学进展), 2019, 31(11): 1560-1575. doi:10.7536/PC190812http://dx.doi.org/10.7536/PC190812
Wang Y, Tang S, Wen Y, Zheng S, Yang B, Yuan W Z. Mater Horiz, 2020, 7(8): 2105-2112. doi:10.1039/d0mh00688bhttp://dx.doi.org/10.1039/d0mh00688b
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan W Z. Chem Soc Rev, 2021, 50(22): 12616-12655. doi:10.1039/d0cs01087ahttp://dx.doi.org/10.1039/d0cs01087a
0
Views
144
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution