浏览全部资源
扫码关注微信
合肥工业大学化学与化工学院 先进催化与反应工程安徽省重点实验室 合肥 230009
Chun-hua Liu, E-mail: lchh88@hfut.edu.cn
Yuan-yuan Zhu, E-mail: yyzhu@hfut.edu.cn
Published:20 August 2022,
Published Online:17 June 2022,
Received:03 February 2022,
Accepted:14 March 2022
移动端阅览
丁晶晶,剧芳,刘春华等.高强度银纳米线/聚丙烯酰胺复合水凝胶的制备及导电性能研究[J].高分子学报,2022,53(08):942-951.
Ding Jing-jing,Ju Fang,Liu Chun-hua,et al.High Strength AgNWs/PAm Composite Hydrogels: Synthesis and Conductivity Study[J].ACTA POLYMERICA SINICA,2022,53(08):942-951.
丁晶晶,剧芳,刘春华等.高强度银纳米线/聚丙烯酰胺复合水凝胶的制备及导电性能研究[J].高分子学报,2022,53(08):942-951. DOI: 10.11777/j.issn1000-3304.2022.22034.
Ding Jing-jing,Ju Fang,Liu Chun-hua,et al.High Strength AgNWs/PAm Composite Hydrogels: Synthesis and Conductivity Study[J].ACTA POLYMERICA SINICA,2022,53(08):942-951. DOI: 10.11777/j.issn1000-3304.2022.22034.
近年来,导电水凝胶作为一种功能聚合物软材料在柔性电子器件领域显示出广泛的应用前景,因此发展高强度导电水凝胶的合成方法在基础和应用研究中均具有重要的价值. 本文提出了一种制备高强度导电水凝胶的简便方法,利用银-硫配位作用实现一维银纳米线(AgNWs)与含硫有机聚合物的有效复合,在提高水凝胶强度的同时,赋予其高的导电性. 具体制备步骤如下:首先通过1-烯丙氧基-2
3-环硫丙烷的开环聚合得到侧基带乙烯基的线性聚硫醚(
P1
),通过巯-烯click反应引入足够量的羧基,赋予其水溶性. 修饰后的线性聚硫醚(
P2
)与一维AgNWs通过银-硫配位作用制备复合交联剂(AgNWs@
P2
). 该交联剂与丙烯酰胺(Am)单体以过硫酸钾(KPS)为引发剂,在水溶液中进行自由基聚合制备银纳米线/聚丙烯酰胺复合水凝胶(AgNWs/PAm composite hydrogel
AC gel). 高分辨场发射扫描电子显微镜的测试证实,AgNWs与
P2
在水凝胶中实现了纳米尺寸上的复合. 刚性AgNWs的引入赋予水凝胶优异的力学强度,其拉伸应变和断裂强度可达到~4500%和~2.2 MPa. 该水凝胶具有高导电性(
σ
=0.44 S/m),且在拉伸过程中,电阻变化与水凝胶的形变线性相关,具有很好的循环稳定性. 该水凝胶材料表现出的稳定电阻响应能力为新一代柔性电子器件的发展提供了材料基础.
Conductive hydrogels
as a kind of functional polymeric soft material
have been demonstrated a wide application prospect in the field of flexible electronics devices in recent years. Therefore
it is of great value to develop a synthesis method for conductive hydrogels with high strength in both fundamental and applied research. In this work
we present a facile method for preparing high-strength hydrogels
in which one-dimensional silver nanowires (AgNWs) are effectively composited with sulfur-containing organic polymers
via
Ag-S coordination
significantly improving the strength of hydrogel
and also imposing high conductivity. The details for this hydrogel are as follows: First
linear polythioether (
P1
) with side vinyl groups is obtained by ring-opening polymerization of 1-allyloxy-2
3-sulfopropane
and subsequently a sufficient amount of carboxyl groups are introduced through thiol-ene click reaction to endow its solubility in water. The modified linear polythioether (
P2
) interacts with AgNWs to afford composited cross-linking agent (AgNWs@
P2
) through Ag-S coordination. The cross-linking agent and acrylamide (Am) monomer were polymerized in water using potassium persulfate (KPS) as the free radical initiator to prepare silver nanowire/polyacrylamide composite hydrogels (AgNWs/PAms
AC gels). The images of high-resolution field emission scanning electron microscope confirm the effective composition of AgNWs and
P2
in nanoscale. The introduction of rigid AgNWs provides hydrogel with excellent mechanical strength and the largest elongation and maximum fracture stress strength can reach ~4500% and ~2.2 MPa
respectively. In additio
n
this hydrogel has high conductivity of 0.44 S/m. During the stretching process
the change of electrical resistance is linearly related to the deformation of the hydrogel
and especially this process has good cyclic stability. The stable resistance response capability of AC gel provides a promising application in the field of flexible electronics devices.
水凝胶银硫配位纳米复合导电
HydrogelsAg-S coordinationNanocompositeConductivity
Yang C, Suo Z. Nat Rev Mater, 2018, 3(6): 125-142. doi:10.1038/s41578-018-0018-7http://dx.doi.org/10.1038/s41578-018-0018-7
Zhang W, Feng P, Chen J, Sun Z, Zhao B. Prog Polym Sci, 2019, 88: 220-240. doi:10.1016/j.progpolymsci.2018.09.001http://dx.doi.org/10.1016/j.progpolymsci.2018.09.001
Fu Q, Hao S, Meng L, Xu F, Yang J. ACS Nano, 2021, 15(11): 18469-18482. doi:10.1021/acsnano.1c08193http://dx.doi.org/10.1021/acsnano.1c08193
Nele V, Wojciechowski J P, Armstrong J P K, Stevens M M. Adv Funct Mater, 2020, 30(42): 2002759. doi:10.1002/adfm.202002759http://dx.doi.org/10.1002/adfm.202002759
Chen J, Zhang L, Tu Y, Zhang Q, Peng F, Zeng W, Zhang M, Tao X. Nano Energy, 2021, 88: 106272. doi:10.1016/j.nanoen.2021.106272http://dx.doi.org/10.1016/j.nanoen.2021.106272
Harada A, Takashima Y, Nakahata M. Acc Chem Res, 2014, 47(7): 2128-2140. doi:10.1021/ar500109hhttp://dx.doi.org/10.1021/ar500109h
Liu Yuanxun(刘元勋), Liu Yang(刘洋), Yang Han(杨汉), Chen Lv(陈侣), Zhang Xiongzhi(张雄志), Liu Simin(刘思敏). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1361-1367. doi:10.11777/j.issn1000-3304.2021.21062http://dx.doi.org/10.11777/j.issn1000-3304.2021.21062
Shi R, Lou Z, Chen S, Shen G. Sci China Mater, 2018, 61(12): 1587-1595. doi:10.1007/s40843-018-9267-3http://dx.doi.org/10.1007/s40843-018-9267-3
Zhou W, Xiao P, Liang Y, Wang Q, Liu D, Yang Q, Chen J, Nie Y, Kuo S W, Chen T. Adv Funct Mater, 2021, 31(42): 2105323. doi:10.1002/adfm.202105323http://dx.doi.org/10.1002/adfm.202105323
Tai Y, Mulle M, Aguilar Ventura I, Lubineau G. Nanoscale, 2015, 7(35): 14766-14773. doi:10.1039/c5nr03155ahttp://dx.doi.org/10.1039/c5nr03155a
Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y. Adv Funct Mater, 2019, 29(1): 1806220. doi:10.1002/adfm.201806220http://dx.doi.org/10.1002/adfm.201806220
Cheng B, Wu P. ACS Appl Mater Interfaces, 2021, 13(5): 6731-6738. doi:10.1021/acsami.1c00402http://dx.doi.org/10.1021/acsami.1c00402
Yang B Z, Zhang S Y, Wang P H, Liu C H, Zhu Y Y. Polymer, 2021, 228: 123863. doi:10.1016/j.polymer.2021.123863http://dx.doi.org/10.1016/j.polymer.2021.123863
Liu S, Li L. ACS Appl Mater Interfaces, 2017, 9(31): 26429-26437. doi:10.1021/acsami.7b07445http://dx.doi.org/10.1021/acsami.7b07445
Yang J, Bai R, Chen B, Suo Z. Adv Funct Mater, 2019, 30(2): 1901693. doi:10.1002/adfm.201901693http://dx.doi.org/10.1002/adfm.201901693
Chen Yanhua(陈艳华), Xia Mengge(夏孟阁), Meng Zhouqi(孟周琪), Wu Yongtao(武永涛), Ren Huaiyin(任怀银), Jiang Yongmei(姜永梅), Liu Yang(刘洋), Zhou Zhe(周哲), Jiang Xiaoze(江晓泽), Zhu Meifang(朱美芳). Acta Polymerica Sinica(高分子学报), 2014, (10): 1342-1349
Thoniyot P, Tan M J, Karim A A, Young D J, Loh X J. Adv Sci, 2015, 2(1-2): 1400010. doi:10.1002/advs.201400010http://dx.doi.org/10.1002/advs.201400010
Wang J J, Zhang Q, Ji X X, Liu L B. Chinese J Polym Sci, 2020, 38(11): 1221-1229. doi:10.1007/s10118-020-2472-0http://dx.doi.org/10.1007/s10118-020-2472-0
Lim S, Son D, Kim J, Lee Y B, Song J K, Choi S, Lee D J, Kim J H, Lee M, Hyeon T, Kim D H. Adv Funct Mater, 2015, 25(3): 375-383. doi:10.1002/adfm.201402987http://dx.doi.org/10.1002/adfm.201402987
Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T L. ACS Nano, 2018, 12(3): 2346-2354. doi:10.1021/acsnano.7b07613http://dx.doi.org/10.1021/acsnano.7b07613
Qin H, Zhang T, Li H N, Cong H P, Antonietti M, Yu S H. Chem, 2017, 3(4): 691-705. doi:10.1016/j.chempr.2017.07.017http://dx.doi.org/10.1016/j.chempr.2017.07.017
Amjadi M, Kyung K U, Park I, Sitti M. Adv Funct Mater, 2016, 26(11): 1678-1698. doi:10.1002/adfm.201504755http://dx.doi.org/10.1002/adfm.201504755
Feng Y, Liu H, Zhu W, Guan L, Yang X, Zvyagin A V, Zhao Y, Shen C, Yang B, Lin Q. Adv Funct Mater, 2021, 31(46): 2105264. doi:10.1002/adfm.202105264http://dx.doi.org/10.1002/adfm.202105264
Yuan T, Qu X, Cui X, Sun J. ACS Appl Mater Interfaces, 2019, 11(35): 32346-32353. doi:10.1021/acsami.9b08208http://dx.doi.org/10.1021/acsami.9b08208
Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z, Cui Y. Nat Commun, 2013, 4: 1943. doi:10.1038/ncomms2941http://dx.doi.org/10.1038/ncomms2941
Lu Xiaoxia(卢晓霞), Li Pengyun(李鹏云), Li Jiamin(李佳敏), He Weidong(何卫东). Acta Polymerica Sinica(高分子学报), 2016, (11): 1563-1571. doi:10.11777/j.issn1000-3304.2016.16086http://dx.doi.org/10.11777/j.issn1000-3304.2016.16086
Yuan Tao(袁涛), Sun Junqi(孙俊奇). Acta Polymerica Sinica(高分子学报), 2019, 50(12): 1263-1271. doi:10.11777/j.issn1000-3304.2019.19093http://dx.doi.org/10.11777/j.issn1000-3304.2019.19093
Fan L, Yang D, Huang L, Fan M, Lei C, Fu Q. Polymer, 2020, 201: 122608. doi:10.1016/j.polymer.2020.122608http://dx.doi.org/10.1016/j.polymer.2020.122608
Ahn Y, Lee H, Lee D, Lee Y. ACS Appl Mater Interfaces, 2014, 6(21): 18401-18407. doi:10.1021/am504462fhttp://dx.doi.org/10.1021/am504462f
Ding J, Qiao Z, Zhang Y, Wei D, Chen S, Tang J, Chen L, Wei D, Sun J, Fan H. Carbohydr Polym, 2020, 247: 116686. doi:10.1016/j.carbpol.2020.116686http://dx.doi.org/10.1016/j.carbpol.2020.116686
Azadi S, Peng S, Moshizi S A, Asadnia M, Xu J, Park I, Wang C H, Wu S. Adv Mater Technol, 2020, 5(11): 2000426. doi:10.1002/admt.202000426http://dx.doi.org/10.1002/admt.202000426
Han L, Liu K, Wang M, Wang K, Fang L, Chen H, Zhou J, Lu X. Adv Funct Mater, 2018, 28(3): 1704195. doi:10.1002/adfm.201704195http://dx.doi.org/10.1002/adfm.201704195
Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L. Adv Funct Mater, 2017, 27(48): 1703852. doi:10.1002/adfm.201703852http://dx.doi.org/10.1002/adfm.201703852
Liang Y, Zhao X, Hu T, Han Y, Guo B J. Colloid Interface Sci, 2019, 556: 514-528. doi:10.1016/j.jcis.2019.08.083http://dx.doi.org/10.1016/j.jcis.2019.08.083
Zhang Z, Nie X, Wang F, Chen G, Huang W Q, Xia L, Zhang W J, Hao Z Y, Hong C Y, Wang L H, You Y Z. Nat Commun, 2020, 11(1): 3654. doi:10.1038/s41467-020-17474-0http://dx.doi.org/10.1038/s41467-020-17474-0
Chen X, Lai N C, Wei K, Li R, Cui M, Yang B, Wong S H D, Deng Y, Li J, Shuai X, Bian L. ACS Nano, 2020, 14(4): 4027-4035. doi:10.1021/acsnano.9b08564http://dx.doi.org/10.1021/acsnano.9b08564
Xu J, Wang K, Li Y, Zhuang T T, Gao H L, Liu Y Y, He C X, Yu S H. Sci China Chem, 2020, 63(8): 1046-1052. doi:10.1007/s11426-020-9769-7http://dx.doi.org/10.1007/s11426-020-9769-7
Juby K A, Dwivedi C, Kumar M, Kota S, Misra H S, Bajaj P N. Carbohydr Polym, 2012, 89(3): 906-913. doi:10.1016/j.carbpol.2012.04.033http://dx.doi.org/10.1016/j.carbpol.2012.04.033
0
Views
192
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution