浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 有机固体院重点实验室 北京 100190
2.苏州大学材料与化学化工学部 先进光电材料重点实验室 苏州 215123
Published:20 August 2022,
Published Online:23 June 2022,
Received:17 February 2022,
Accepted:24 March 2022
移动端阅览
李骁骏,李永舫.共轭聚合物和共轭有机分子电子能级的测量[J].高分子学报,2022,53(08):995-1004.
Li Xiao-jun,Li Yong-fang.Measurement of Electronic Energy Levels of Conjugated Polymers and Organic Molecules[J].ACTA POLYMERICA SINICA,2022,53(08):995-1004.
李骁骏,李永舫.共轭聚合物和共轭有机分子电子能级的测量[J].高分子学报,2022,53(08):995-1004. DOI: 10.11777/j.issn1000-3304.2022.22040.
Li Xiao-jun,Li Yong-fang.Measurement of Electronic Energy Levels of Conjugated Polymers and Organic Molecules[J].ACTA POLYMERICA SINICA,2022,53(08):995-1004. DOI: 10.11777/j.issn1000-3304.2022.22040.
近年来,有机发光二极管(OLED)和有机太阳电池(OSC)等有机光电器件步入快速发展阶段,受到广泛关注. 而有机半导体的电子能级(HOMO和LUMO能级)与电极功函数的匹配对其光电性能至关重要,它决定着OLED电极电荷注入的能垒和OSC电极电荷收集的能垒. 另外,OSC中给体材料和受体材料电子能级的匹配对其光伏性能也非常重要. 因而,准确测量有机半导体光电材料的电子能级非常重要. 本文将介绍测量有机半导体电子能级常用的紫外光电子能谱和电化学方法,从测量原理、样品制备、测量注意事项等方面详细介绍了有机半导体电子能级的测量与计算. 我们给出了几个共轭聚合物和共轭有机小分子等有机半导体电子能级测量的实例,并列举了部分典型有机半导体材料已报道的电子能级数据以供读者参考.
In recent years
organic optoelectronic devices
including organic light emitting diodes (OLEDs) and organic solar cells (OSCs)
have attracted great attention and developed rapidly. The matching of the electronic energy levels (HOMO and LUMO energy levels) of the organic semiconductors with the work-functions of the electrodes is of great importance for the optoelectronic properties of the devices. In addition
the matching of the HOMO and LUMO energy levels of the donor and acceptor materials is also crucial for the photovoltaic performance of the OSCs. Therefore
it is very important to accurately measure the HOMO and LUMO energy levels of the organic semiconductors. In this paper
we will introduce the commonly used measurement methods of the electronic energy levels of the organic semiconductors
including ultraviolet photoelectron spectroscopy (UPS) and electrochemical methods. And we will explain the measurement mechanism
sample preparation
attention items of the measurements
and give the calculation equations of the electronic energy levels. We also give several examples to measure the energy levels of the organic semiconductors including conjugated polymers and conjugated organic small molecule semiconductors
and liste the HOMO and LUMO energy levels of some typical organic semiconductor materials reported in literatures
for the reference of the readers.
2
有机半导体电子能级测量紫外光电子能谱循环伏安法HOMO和LUMO能级
Organic semiconductorMeasurement of electronic energy levelsUltraviolet photoelectron spectroscopy (UPS)Cyclic voltammetryHOMO and LUMO energy levels
Li Y F. Acc Chem Res, 2012, 45(5): 723-733. doi:10.1021/ar2002446http://dx.doi.org/10.1021/ar2002446
Endres J, Pelczer I, Rand B P, Kahn A. Chem Mater, 2016, 28(3): 794-801. doi:10.1021/acs.chemmater.5b03857http://dx.doi.org/10.1021/acs.chemmater.5b03857
Braun S, Salaneck W R, Fahlman M. Adv Mater, 2009, 21(14-15): 1450-1472. doi:10.1002/adma.200802893http://dx.doi.org/10.1002/adma.200802893
Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang Z, Zhang Z, Ade H, Li Y F. Chem Mater, 2017, 29(23):10130-10138. doi:10.1021/acs.chemmater.7b03928http://dx.doi.org/10.1021/acs.chemmater.7b03928
Eckhardt H, Shacklette L W, Jen K Y, Elsenbaumer R L. J Chem Phys, 1989, 91(2): 1303-1315. doi:10.1063/1.457153http://dx.doi.org/10.1063/1.457153
Helfrick J, Bottomley L A. Anal Chem, 2009, 81(21): 9041-9047. doi:10.1021/ac9016874http://dx.doi.org/10.1021/ac9016874
Li X, Ma R, Liu T, Xiao Y, Chai G, Lu X, Yan H, Li Y F. Sci China Chem, 2020, 63(9): 1256-1261. doi:10.1007/s11426-020-9805-7http://dx.doi.org/10.1007/s11426-020-9805-7
Cardona C M, Li W, Kaifer A E, Stockdale D, Bazan G C. Adv Mater, 2011, 23(20): 2367-2371. doi:10.1002/adma.201004554http://dx.doi.org/10.1002/adma.201004554
Li Y F, Cao Y, Gao J, Wang D L, Yu G, Heeger A. J Synth Met, 1999, 99(3): 243-248. doi:10.1016/s0379-6779(99)00007-7http://dx.doi.org/10.1016/s0379-6779(99)00007-7
Li X, Luo S, Sun H, Sung H, Yu H, Liu T, Xiao Y, Bai F, Pan M, Lu X, Williams I, Guo X, Li Y F, Yan H. Energy Environ Sci, 2021, 14(8): 4555-4563. doi:10.1039/d1ee00687hhttp://dx.doi.org/10.1039/d1ee00687h
Richter M M, Fan F F, Klavetter F, Heeger A J, Bard A J. Chem Phys Lett, 1994, 226(1-2): 115-120. doi:10.1016/0009-2614(94)00716-0http://dx.doi.org/10.1016/0009-2614(94)00716-0
Gritzner G, Kuta J. Pure Appl Chem, 1984, 56(4): 461-466. doi:10.1351/pac198456040461http://dx.doi.org/10.1351/pac198456040461
Pommerehne J, Vestweber H, Guss W, Mahrt R F, Bassler H, Porsch M, Daub J. Adv Mater, 1995, 7(6): 551-554. doi:10.1002/adma.19950070608http://dx.doi.org/10.1002/adma.19950070608
Sun Q, Wang H, Yang C, Li Y F. J Mater Chem, 2003, 13: 800-806. doi:10.1039/b209469jhttp://dx.doi.org/10.1039/b209469j
Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z, Li Y F. Nat Commun, 2018, 9: 743. doi:10.1038/s41467-018-03207-xhttp://dx.doi.org/10.1038/s41467-018-03207-x
Zhu Y, Zhao F, Wang W, Li Y, Zhang S, Lin Y. Adv Energy Sustain Res, 2022, 3: 2100184. doi:10.1002/aesr.202100184http://dx.doi.org/10.1002/aesr.202100184
Li X, Yan T, Bin H, Han G, Xue L, Liu F, Yi Y, Zhang Z, Russelle T, Li Y F. J Mater Chem A, 2017, 5(43): 22588-22597. doi:10.1039/c7ta07049ghttp://dx.doi.org/10.1039/c7ta07049g
Yu H, Qi Z, Zhang J, Wang Z, Sun R, Chang Y, Sun H, Zhou W, Min J, Ade H, Yan H. J. Mater Chem A, 2020, 8(45): 23756-23765. doi:10.1039/d0ta06658chttp://dx.doi.org/10.1039/d0ta06658c
Hou J H, Tan Z, Yan Y, He Y, Yang C, Li Y F. J Am Chem Soc, 2006, 128(14): 4911-4916. doi:10.1021/ja060141mhttp://dx.doi.org/10.1021/ja060141m
Bin H, Gao L, Zhang Z, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y F. Nat Commun, 2016, 7: 13651. doi:10.1038/ncomms13651http://dx.doi.org/10.1038/ncomms13651
Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J. Adv Mater, 2015, 27(39): 6046-6054. doi:10.1002/adma.201503218http://dx.doi.org/10.1002/adma.201503218
Zhang Z, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y F. Angew Chem Int Ed, 2017, 56(43): 13503-13507. doi:10.1002/anie.201707678http://dx.doi.org/10.1002/anie.201707678
Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27(31): 4655-4660. doi:10.1002/adma.201502110http://dx.doi.org/10.1002/adma.201502110
Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russel T P, Zhang M, Li Y F. Sci China Chem, 2018, 61(5): 531-537. doi:10.1007/s11426-017-9199-1http://dx.doi.org/10.1007/s11426-017-9199-1
Gao L, Zhang Z, Xue L, Min J, Zhang J, Wei Z, Li Y F. Adv Mater, 2016, 28(9): 1884-1890. doi:10.1002/adma.201504629http://dx.doi.org/10.1002/adma.201504629
Lin Y, Wang J, Zhang Z, Bai H, Li Y F, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170-1174. doi:10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
Yang Y K, Zhang Z, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y F. J Am Chem Soc, 2016, 138(45): 15011-15018. doi:10.1021/jacs.6b09110http://dx.doi.org/10.1021/jacs.6b09110
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148-7151. doi:10.1021/jacs.7b02677http://dx.doi.org/10.1021/jacs.7b02677
Zhang H, Yao H, Hou J X, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J H. Adv Mater, 2018, 30(28): 1800613. doi:10.1002/adma.201800613http://dx.doi.org/10.1002/adma.201800613
Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su C, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138(9): 2973-2976. doi:10.1021/jacs.6b00853http://dx.doi.org/10.1021/jacs.6b00853
Li X, Pan F, Sun C, Zhang M, Wang Z, Du J, Wang J, Xiao M, Xue L, Zhang Z G, Zhang C, Liu F, Li Y F. Nat Commun, 2019, 10: 519. doi:10.1038/s41467-019-08508-3http://dx.doi.org/10.1038/s41467-019-08508-3
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H, Lau T, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y. Joule, 2019, 3(4): 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
0
Views
815
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution