The phase separation of poly(methyl methacrylate)/poly(vinyl acetate)/silica (PMMA/PVAc/SiO
2
) blends was investigated by optical microscope
rheology
morphological observation and Fourier transform infrared spectroscopy. Strong inter-molecular interaction between PMMA and PVAc was found by the shift of the carbonyl peak position compared to the FTIR of pure polymer and the reduction of chain entanglements inferred from the rheological curves. The addition of nano-silica led to the adsorption of chains of both polymers on the particle surfaces
which changed the inter-molecular interaction between pure PMMA and PVAc. The complex inter-molecular interaction and polymer-particle interaction resulted in the failure of time-temperature superposition over the entire temperature range. So the normalized Cole-Cole plot was proposed to analyze the phase separation process of the blend. Due to the inter-molecular interaction
the normalized Cole-Cole plot of the PMMA/PVAc blend deviates from the polymer
and secondary deviation occurs at the end of the curve during the heating process
which is the contribution of the phase interface. The nanoparticles have different influences on the phase separation behavior of the blend
depending on the blend composition. In the near-critical blends
nano-silica promoted the phase separation and was finally located at the interface of the two phases. In the off-critical blends
nano-silica had little effect on phase separation and was finally located in the island domains. The effect of nanoparticles on phase separation of different blends is related to the mechanism of phase separation: the near-critical blends form discontinuous shapes through the decomposition of the spiral nodal line. The phase separation speed is faster than the Brownian motion speed of nanoparticles
which results in the initial distribution of nano-silica in the two phases
and the subsequent movement towards the interface of two phases. The off-critical blends form island shapes through nucleation growth mechanism. Due to the slow phase separation rate
the nano-slica play the role of nuclei during the phase separation. In other words
the phase separation mechanism
Broenian motion of nanoparticles and dynamic adsorption and desorption of polymer chains on the surface of nanoparticles jointly determine the distribution of nanoparticles. Such selective location of nanoparticles determined by the phase separation mechanism supplied a new approach for the control of aggregation of nanoparticles in polymers.
Liu B E, Yu W. Chinese J Polym Sci, 2020, 38: 908-914. doi:10.1007/s10118-020-2396-8http://dx.doi.org/10.1007/s10118-020-2396-8
Huang C W, Gao J P, Yu W, Zhou C X. Macromolecules, 2012, 45: 8420-8429. doi:10.1021/ma301186bhttp://dx.doi.org/10.1021/ma301186b
Gao J P, Huang C W, Wang N, Yu W, Zhou C X. Polymer, 2012, 53(8): 1772-1782. doi:10.1016/j.polymer.2012.02.027http://dx.doi.org/10.1016/j.polymer.2012.02.027
Lipatov Y S, Nesterov A E, Ignatova T D, Nesterov D A. Polymer, 2002, 43(3): 875-880
Gharachorlou A, Goharpey F. Macromolecules, 2008, 41(9): 3276-3283. doi:10.1021/ma7020985http://dx.doi.org/10.1021/ma7020985
Nesterov A E, Lipatov Y S, Horichko V V, Gritsenko O T. Polymer, 1992, 33(3): 619-622. doi:10.1016/0032-3861(92)90740-nhttp://dx.doi.org/10.1016/0032-3861(92)90740-n
Du M, Wu Q, Zuo M, Zheng Q. Eur Polym J, 2013, 49(9): 2721-2729. doi:10.1016/j.eurpolymj.2013.06.006http://dx.doi.org/10.1016/j.eurpolymj.2013.06.006
Gharachorlou A, Goharpey F. Macromolecules, 2008, 41(9): 3276-3283. doi:10.1021/ma7020985http://dx.doi.org/10.1021/ma7020985
Pawar S P, Bose S. Phys Chem Chem Phys, 2015, 17(22): 14470-14478. doi:10.1039/c5cp01644dhttp://dx.doi.org/10.1039/c5cp01644d
Huang C W, Yu W. Rheology and processing of nanoparticle filled polymer blend nanocomposites. In: Thomas S, Muller R, Abraham J, ed. Rheology and Processing of Polymer Nanocomposites. John Wiley & Sons, Inc. 2016. 491-550
Jeon H S, Nakatani A I, Han C C, Colby R H. Macromolecules, 2000, 33(26): 9732-9739. doi:10.1021/ma000714uhttp://dx.doi.org/10.1021/ma000714u
Niu Y H, Wang Z G. Macromolecules, 2006, 39(12): 4175-4183. doi:10.1021/ma060103nhttp://dx.doi.org/10.1021/ma060103n
Du M, Gong J H, Zheng Q. Polymer, 2004, 45(19): 6725-6730. doi:10.1016/j.polymer.2004.07.069http://dx.doi.org/10.1016/j.polymer.2004.07.069
Li R M, Yu W, Zhou C X. Polym Bull, 2006, 56(4): 455-466. doi:10.1007/s00289-005-0499-6http://dx.doi.org/10.1007/s00289-005-0499-6
Zhang R Y, Cheng H, Zhang C G, Sun T C, Dong X, Han C C. Macromolecules, 2008, 41(18): 6818-6829. doi:10.1021/ma800646shttp://dx.doi.org/10.1021/ma800646s
Xu Y F, Yu W, Zhou C X. Macromolecules, 2018, 51: 7338-7349. doi:10.1021/acs.macromol.8b01214http://dx.doi.org/10.1021/acs.macromol.8b01214
Coleman M M, Zarian J, Varnell D F, Painter P C. J Polym Sci: Polym Lett Edn, 1977, 15(12): 745-750. doi:10.1002/pol.1977.130151207http://dx.doi.org/10.1002/pol.1977.130151207
Cui W Z, You W, Sun Z Y, Yu W. Macromolecules, 2021, 54(12): 5484-5497. doi:10.1021/acs.macromol.1c00264http://dx.doi.org/10.1021/acs.macromol.1c00264
Chen Q, Matsumiya Y, Masubuchi Y, Watanabe H, Inoue T. Macromolecules, 2008, 41(22): 8694-8711. doi:10.1021/ma8013417http://dx.doi.org/10.1021/ma8013417
Pathak J A, Colby R H, Floudas G, Jérôme R. Macromolecules, 1999, 32 (8): 2553-2561. doi:10.1021/ma9817121http://dx.doi.org/10.1021/ma9817121
Application of Extensional Rheology in Polymer Characterization
Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane
Toward Correct Measurements of Shear Rheometry
Progress in the Viscoelasticity Study of Giant Molecules
Related Author
Shuang Liu
Qian Huang
Xian-bo Huang
Quan Chen
Su-ting Liu
Xiu-juan Wang
Nan-ying Ning
Ming Tian
Related Institution
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University
National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD.
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry
Bohai Rim Collaborative Innovation Center on Green Chemical Application Technology, Department of Chemical Engineering, Weifang Vocational College
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology