浏览全部资源
扫码关注微信
浙江大学高分子科学与工程学系 杭州 310027
Published:20 July 2022,
Published Online:06 June 2022,
Received:27 February 2022,
移动端阅览
王亚,刘森坪,许震.二维大分子的构象及凝聚态调控[J].高分子学报,2022,53(07):752-768.
Wang Ya,Liu Sen-ping,Xu Zhen.Conformations of Two-dimensional Macromolecules and Condensed Structure Modulation[J].ACTA POLYMERICA SINICA,2022,53(07):752-768.
王亚,刘森坪,许震.二维大分子的构象及凝聚态调控[J].高分子学报,2022,53(07):752-768. DOI: 10.11777/j.issn1000-3304.2022.22056.
Wang Ya,Liu Sen-ping,Xu Zhen.Conformations of Two-dimensional Macromolecules and Condensed Structure Modulation[J].ACTA POLYMERICA SINICA,2022,53(07):752-768. DOI: 10.11777/j.issn1000-3304.2022.22056.
近年来,二维大分子蓬勃发展,已经成为继经典线形与支化拓扑大分子之后的一个重要分支. 二维大分子不但补全了经典高分子科学中缺失的二维分子维度,而且成为具有广泛且重要应用前景的材料新体系,将延续高分子科学在国民经济生产生活中的重要作用. 类比成熟的线形高分子系统,深入理解二维大分子的构象与凝聚态并建立精确的材料结构调控方法是其发展的基础,目前仍然处于起步阶段. 本文以我们课题组的研究工作为主线,以氧化石墨烯为二维大分子理想模型,总结了二维大分子构象行为与凝聚态结构调控的研究思路与进展. 简要回顾了二维大分子构象的研究历史,介绍了构象行为规律、液晶凝聚态以及固态凝聚结构调控方法的系列新进展,并对未来二维大分子构象及凝聚态研究进行了展望,为二维大分子及材料的发展提供了新思路.
Two-dimensional macromolecules
a new family of polymer with 2D topology
have expanded to include hundreds of members from insulator and semiconductor to metal and superconductor
rapidly promising potential breakthroughs in extensive applications. Two-dimensional macromolecules are posed to rapidly extend the polymer science and technologies and indispensably shape our future lives. The great expectations of 2D macromolecules urgently call a unified understanding of their macromolecular behaviors but also a general methodology to guide the precise fabrication with rational structural design
in order to achieve disruptive performances of their macroscopic materials. This principal development philosophy has been self-evidenced by the classic 1D polymer science
engineering and industry. Motivated by this philosophy
we need to establish the conformation principle of 2D macromolecules and a systematic routine for macroscopically assembled materials. In this monograph
we give a systematic review to researches of fundamental conformation behaviors of 2D macromolecules and the emerged conceptual researches of modulating their condensed structures. In the experimental model of graphene oxide
we conclude the advances in fundamental scaling relationship between conformation and molecular size of 2D macromolecules
their conformation transition rules
the spontaneous and artificial liquid crystalline phases and the methods for modulating the multiscale condensed structures in their macroscopic materials. The research advances extend from the conformation transition diagram of individual and multiple 2D macromolecules to the exotic liquid crystal behaviors and the condensed structures of their macroscopic materials. An important analogy between 1D and 2D polymers has been proposed and the conformation principle of 2D macromolecules is clearly establish
laying the foundation of the unified polymer theory. We hope that the monograph can help complete the systematic understanding of polymer science by including the new 2D molecular topology. The developing system of 2D macromolecules will generally guide the precise control and versatile design of macroscopic materials of 2D polymers and realize wide applications.
二维大分子构象行为凝聚态二维材料
Two dimensional macromoleculesConformationCondensed stateTwo dimensional materials
Doi M M, Edwards S F. Theory of Polymer Dynamics. United Kingdom: Oxford University Press, 1988
Cates M E. Phys Rev Lett, 1984, 53(9): 926-929. doi:10.1103/physrevlett.53.926http://dx.doi.org/10.1103/physrevlett.53.926
Kantor Y, Kardar M, Nelson D R. Phys Rev Lett, 1986, 57(7): 791-794. doi:10.1103/physrevlett.57.791http://dx.doi.org/10.1103/physrevlett.57.791
Paczuski M, Kardar M, Nelson D R. Phys Rev Lett, 1988, 60(25): 2638-2640. doi:10.1103/physrevlett.60.2638http://dx.doi.org/10.1103/physrevlett.60.2638
Sakamoto J, van Heijst J, Lukin O, Schlüter A D. Angew Chem Int Ed, 2009, 48(6): 1030-1069. doi:10.1002/anie.200801863http://dx.doi.org/10.1002/anie.200801863
Payamyar P, King B T, Öttinger H C, Schlüter A D. Chem Commun, 2016, 52(1): 18-34. doi:10.1039/c5cc07381bhttp://dx.doi.org/10.1039/c5cc07381b
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. Nanoscale, 2011, 3(1): 20-30. doi:10.1039/c0nr00323ahttp://dx.doi.org/10.1039/c0nr00323a
Colson J W, Dichtel W R. Nat Chem, 2013, 5(6): 453-465. doi:10.1038/nchem.1628http://dx.doi.org/10.1038/nchem.1628
Zhuang X D, Mai Y Y, Wu D Q, Zhang F, Feng X L. Adv Mater, 2015, 27(3): 403-427. doi:10.1002/adma.201401857http://dx.doi.org/10.1002/adma.201401857
Zang Y, Aoki T, Teraguchi M, Kaneko T, Ma L Q, Jia H G. Polym Rev, 2015, 55(1): 57-89. doi:10.1080/15583724.2014.963235http://dx.doi.org/10.1080/15583724.2014.963235
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieval I S, Firsov A A. Science, 2004, 306(5696): 666-669. doi:10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896
Li Z, Liu Z, Sun H Y, Gao C. Chem Rev, 2015, 115(15): 7046-7117. doi:10.1021/acs.chemrev.5b00102http://dx.doi.org/10.1021/acs.chemrev.5b00102
Xu Z, Gao C. ACS Nano, 2011, 5(4): 2908-2915. doi:10.1021/nn200069whttp://dx.doi.org/10.1021/nn200069w
Xu Z, Gao C. Nat Commun, 2011, 2: 571. doi:10.1038/ncomms1583http://dx.doi.org/10.1038/ncomms1583
Xu Z, Sun H Y, Zhao X L, Gao C. Adv Mater, 2013, 25(2): 188-193. doi:10.1002/adma.201203448http://dx.doi.org/10.1002/adma.201203448
Xu Z, Liu Z, Sun H Y, Gao C. Adv Mater, 2013, 25(23): 3249-3253. doi:10.1002/adma.201300774http://dx.doi.org/10.1002/adma.201300774
Xu Z, Liu Y J, Zhao X L, Peng L, Sun H Y, Xu Y, Ren X B, Jin C H, Xu P, Wang M, Gao C. Adv Mater, 2016, 28(30): 6449-6456. doi:10.1002/adma.201506426http://dx.doi.org/10.1002/adma.201506426
Xu Z, Gao C. Mater Today, 2015, 18(9): 480-492. doi:10.1016/j.mattod.2015.06.009http://dx.doi.org/10.1016/j.mattod.2015.06.009
Xin G Q, Yao T K, Sun H T, Scott S M, Shao D, Wang G K, Lian J. Science, 2015, 349(6252): 1083-1087. doi:10.1126/science.aaa6502http://dx.doi.org/10.1126/science.aaa6502
Xin G Q, Zhu W G, Deng Y X, Cheng J, Zhang L T, Chung A J, Lian J. Nat Nanotechnol, 2019, 14(2): 168-175. doi:10.1038/s41565-018-0330-9http://dx.doi.org/10.1038/s41565-018-0330-9
Li P, Liu Y J, Shi S Y, Xu Z, Ma W G,Wang Z Q, Liu S P, Gao C. Adv Funct Mater, 2020, 30(52): 2006584. doi:10.1002/adfm.202006584http://dx.doi.org/10.1002/adfm.202006584
Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448(7152): 457-460. doi:10.1038/nature06016http://dx.doi.org/10.1038/nature06016
Li P, Yang M C, Liu Y J, Qin H S, Liu J R, Xu Z, Gao C. Nat Commun, 2020, 11(1): 2645. doi:10.1038/s41467-020-16494-0http://dx.doi.org/10.1038/s41467-020-16494-0
Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C. Adv Mater, 2017, 29(27): 1700589. doi:10.1002/adma.201700589http://dx.doi.org/10.1002/adma.201700589
Zhong J, Sun W, Wei Q W, Qian X T, Cheng H M, Ren W C. Nat Commun, 2018, 9(1): 3484. doi:10.1038/s41467-018-05723-2http://dx.doi.org/10.1038/s41467-018-05723-2
Zhao C Q, Zhang P C, Zhou J J, Qi S H, Yamauchi Y, Shi R R, Fang R C, Ishida Y, Wang S T, Tomsia A P, Jiang L. Nature, 2020, 580(7802): 210-215. doi:10.1038/s41586-020-2161-8http://dx.doi.org/10.1038/s41586-020-2161-8
Lin Z Y, Liu Y, Halim U, Ding M N, Liu Y Y, Wang Y L, Jia C C, Chen P, Duan X D, Wang C, Song F, Li M F. Nature, 2018, 562(7226): 254-258. doi:10.1038/s41586-018-0574-4http://dx.doi.org/10.1038/s41586-018-0574-4
Sun H Y, Xu Z, Gao C. Adv Mater, 2013, 25(18): 2554-2560. doi:10.1002/adma.201204576http://dx.doi.org/10.1002/adma.201204576
Guo F, Jiang Y Q, Xu Z, Xiao Y H, Fang B, Liu Y J, Gao W W, Gao C. Nat Commun, 2018, 9(1): 881. doi:10.1038/s41467-018-03268-yhttp://dx.doi.org/10.1038/s41467-018-03268-y
Guo F, Zheng X W, Liang C Y, Jiang Y Q, Xu Z, Jiao Z D, Liu Y J, Wang H T, Sun H Y, Ma L, Gao W W, Greiner A, Agarwal S, Gao C. ACS Nano, 2019, 13(5): 5549-5558. doi:10.1021/acsnano.9b00428http://dx.doi.org/10.1021/acsnano.9b00428
Qiu L, Liu J Z, Chang S L Y, Wu Y Z, Li D. Nat Commun, 2012, 3: 1241. doi:10.1038/ncomms2251http://dx.doi.org/10.1038/ncomms2251
Jiang Y Q, Xu Z, Huang T Q, Liu Y J, Guo F, Xi J B, Gao W W, Gao C. Adv Funct Mater, 2018, 28(16): 1707024. doi:10.1002/adfm.201707024http://dx.doi.org/10.1002/adfm.201707024
de Gennes P G. Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press, 1979. doi:10.1063/1.2914118http://dx.doi.org/10.1063/1.2914118
Nelson D, Piran T, Weinberg S. Statistical Mechanics of Membranes and Surfaces. 2nd ed. Singapore: World Scientific Publishing Company, 2004. doi:10.1142/5473http://dx.doi.org/10.1142/5473
Kantor Y, Nelson D R. Phys Rev Lett, 1987, 58(26): 2774-2777. doi:10.1103/physrevlett.58.2774http://dx.doi.org/10.1103/physrevlett.58.2774
Abraham F F, Kardar M. Science, 1991, 252(5004): 419-422. doi:10.1126/science.252.5004.419http://dx.doi.org/10.1126/science.252.5004.419
Lipowsky R. Nature, 1991, 349(6309): 475-481. doi:10.1038/349475a0http://dx.doi.org/10.1038/349475a0
Bowick M, Falcioni M, Thorleifsson G. Phys Rev Lett, 1997, 79(5): 885-888. doi:10.1103/physrevlett.79.885http://dx.doi.org/10.1103/physrevlett.79.885
Wen X, Garland C W, Hwa T, Kardar M, Kokufuta E, Li Y, Orkisz M, Tanaka T. Nature, 1992, 355(6359): 426-428. doi:10.1038/355426a0http://dx.doi.org/10.1038/355426a0
Hwa T, Kokufuta E, Tanaka T. Phys Rev A, 1991, 44(4): R2235-R2238. doi:10.1103/physreva.44.r2235http://dx.doi.org/10.1103/physreva.44.r2235
Spector M S, Naranjo E, Chiruvolu S, Zasadzinski J A. Phys Rev Lett, 1994, 73(21): 2867-2870. doi:10.1103/physrevlett.73.2867http://dx.doi.org/10.1103/physrevlett.73.2867
Koltonow A R, Luo C, Luo J, Huang J X. ACS Omega, 2017, 2(11): 8005-8009. doi:10.1021/acsomega.7b01647http://dx.doi.org/10.1021/acsomega.7b01647
Wang Y, Wang S J, Li P, Rajendran R, Xu Z, Liu S P, Guo F, He Y H, Li Z S, Xu Z P, Gao C. Matter, 2020, 3(1): 230-245. doi:10.1016/j.matt.2020.04.023http://dx.doi.org/10.1016/j.matt.2020.04.023
Li P, Wang S J, Meng F X, Wang Y, Guo F, Rajendran S, Gao C, Xu Z P, Xu Z. Macromolecules, 2020, 53(23): 10421-10430. doi:10.1021/acs.macromol.0c01425http://dx.doi.org/10.1021/acs.macromol.0c01425
Xiao Y H, Xu Z, Liu Y J, Peng L, Xi J B, Fang B, Guo F, Li P, Gao C. ACS Nano, 2017, 11(8): 8092-8102. doi:10.1021/acsnano.7b02915http://dx.doi.org/10.1021/acsnano.7b02915
Tang B, Gao E L, Xiong Z Y, Dang B, Xu Z P, Wang X G. Chem Mater, 2018, 30(17): 5951-5960. doi:10.1021/acs.chemmater.8b02083http://dx.doi.org/10.1021/acs.chemmater.8b02083
Xu Z, Zheng B N, Chen J W, Gao C. Chem Mater, 2014, 26(23): 6811-6818. doi:10.1021/cm503418hhttp://dx.doi.org/10.1021/cm503418h
Cui X P, Kong Z Z, Gao E L, Huang D Z, Hao Y. Shen H G, Di C A, Xu Z P, Zheng J, Zhu D B. Nat Commun, 2018, 9(1): 1301. doi:10.1038/s41467-018-03752-5http://dx.doi.org/10.1038/s41467-018-03752-5
Zang J F, Ryu, S, Pugno N, Wang Q M, Tu Q, Buehler M J, Zhao X H. Nat Mater, 2013, 12(4): 321-325. doi:10.1038/nmat3542http://dx.doi.org/10.1038/nmat3542
Wang Q M, Zhao X H. MRS Bull, 2016, 41(2): 115-122. doi:10.1557/mrs.2015.338http://dx.doi.org/10.1557/mrs.2015.338
Pang K, Song X, Xu Z, Liu X T, Gao C. Sci Adv, 2020, 6(46): eabd4045. doi:10.1126/sciadv.abd4045http://dx.doi.org/10.1126/sciadv.abd4045
Thiele V H. Colloid Polym Sci, 1948, 111(1): 15-19. doi:10.1007/bf01522013http://dx.doi.org/10.1007/bf01522013
Sonin A S. J Mater Chem, 1998, 8(12): 2557-2574. doi:10.1039/a802666ahttp://dx.doi.org/10.1039/a802666a
Kim J E, Han T H, Lee S H, Kim J Y, Ahn C W, Yun J M, Kim S O. Angew Chem Int Ed, 2011, 50(13): 3043-3047. doi:10.1002/anie.201004692http://dx.doi.org/10.1002/anie.201004692
Dan B, Behabtu N, Martinez A, Evans J S, Kosynkin D V, Tour J M, Smalyukh I I. Soft Matter, 2011, 7(23): 11154-11159. doi:10.1039/c1sm06418ehttp://dx.doi.org/10.1039/c1sm06418e
Zhou Z X, Wang J H, Yu J C, Shen Y F, Li Y, Liu A R, Liu S Q, Zhang Y J. J Am Chem Soc, 2015, 137(6): 2179-2182. doi:10.1021/ja512179xhttp://dx.doi.org/10.1021/ja512179x
Jalili R, Yamini S A, Benedetti T M, Aboutalebi S H, Officer D L. Nanoscale, 2016, 8(38): 16862-16867. doi:10.1039/c6nr03681chttp://dx.doi.org/10.1039/c6nr03681c
Jiang Y Q, Guo F, Xu Z, Gao W W, Gao C. Nat Commun, 2019, 10(1): 4111. doi:10.1038/s41467-019-11941-zhttp://dx.doi.org/10.1038/s41467-019-11941-z
Ma J Y, Lin S P, Jiang Y Q, Li P, Zhang H J, Xu Z, Wu H P, Lin P C, Brea J, Gao W W, Gao C. ACS Nano, 2020, 14(2): 2336-2344. doi:10.1021/acsnano.9b09503http://dx.doi.org/10.1021/acsnano.9b09503
Li P, Wong M, Zhang X, Yao H, Ishige R, Takahara A, Miyamoto M, Nishimura R. Sue H J. ACS Photonics, 2014, 1(1): 79-86. doi:10.1021/ph400093chttp://dx.doi.org/10.1021/ph400093c
Shen T Z, Hong S H, Song J K. Nat Mater, 2014, 13(4): 394-399. doi:10.1038/nmat3888http://dx.doi.org/10.1038/nmat3888
Fang B, Chang D, Xu Z, Gao C. Adv Mater, 2020, 32(5): 1902664. doi:10.1002/adma.201902664http://dx.doi.org/10.1002/adma.201902664
Fang B, Peng L, Xu Z, Gao C. ACS Nano, 2015, 9(5): 5214-5222. doi:10.1021/acsnano.5b00616http://dx.doi.org/10.1021/acsnano.5b00616
Niu Y, Wang R G, Jiao W C, Ding G M, Hao L F, Yang F, He X D. Carbon, 2015, 95: 34-41. doi:10.1016/j.carbon.2015.08.002http://dx.doi.org/10.1016/j.carbon.2015.08.002
Zhou Y Y, Jiang K, Zhao Z G, Li Q W, Ma R Z, Sasaki T, Geng F X. Energy Stor Mater, 2020, 24: 504-511. doi:10.1016/j.ensm.2019.07.007http://dx.doi.org/10.1016/j.ensm.2019.07.007
Yang Q Y, Xu Z, Fang B, Huang T Q, Cai S Y, Chen H, Liu Y J, Gopalsamy K, Gao W W, Gao G. J Mater Chem A, 2017, 5(42): 22113-22119. doi:10.1039/c7ta07999khttp://dx.doi.org/10.1039/c7ta07999k
Jiang Y Q, Wang Y, Xu Z, Gao C. Acc Mater Res, 2020, 1(3): 175-187. doi:10.1021/accountsmr.0c00027http://dx.doi.org/10.1021/accountsmr.0c00027
Fang B, Xiao Y H, Xu Z, Chang D, Wang B, Gao W W, Gao C. Mater Horiz, 2019, 6(6): 1207-1214. doi:10.1039/c8mh01647jhttp://dx.doi.org/10.1039/c8mh01647j
Li Z, Huang T Q, Gao W W, Xu Z, Chang D, Zhang C X, Gao C. ACS Nano, 2017, 11(11): 11056-11065. doi:10.1021/acsnano.7b05092http://dx.doi.org/10.1021/acsnano.7b05092
Han J W, Li H, Kong D B, Zhang C, Tao Y, Li H, Yang Q H, Chen L Q. ACS Energy Lett, 2020, 5(6): 1986-1995. doi:10.1021/acsenergylett.0c00851http://dx.doi.org/10.1021/acsenergylett.0c00851
Qi C, Luo C, Tao Y, Lv W, Yang Q H. Sci China Mater, 2019, 63(10): 1870-1877. doi:10.1007/s40843-019-1227-7http://dx.doi.org/10.1007/s40843-019-1227-7
Guo F, Wang Y, Jiang Y Q, Li Z S, Xu Z, Zhao X L, Guo T B, Jiang W, Gao C. Adv Mater, 2021, 33(25): e2008116. doi:10.1002/adma.202008116http://dx.doi.org/10.1002/adma.202008116
Pang K, Liu X T, Pang J T, Samy A, Xie J, Liu Y J, Peng L, Xu Z, Gao C. Adv Mater, 2022, 34(14): e2103740. doi:10.1002/adma.202103740http://dx.doi.org/10.1002/adma.202103740
0
Views
206
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution