浏览全部资源
扫码关注微信
南开大学药物化学生物学国家重点实验室 天津 300071
Published:20 July 2022,
Published Online:18 May 2022,
Received:28 February 2022,
Accepted:15 April 2022
移动端阅览
张好,李昌华.光功能基元J-型序构的高分子诊疗材料[J].高分子学报,2022,53(07):769-783.
Zhang Hao,Li Chang-hua.Polymeric Materials with J-Stacked Photo-functional Moieties for Disease Diagnosis and Therapy[J].ACTA POLYMERICA SINICA,2022,53(07):769-783.
张好,李昌华.光功能基元J-型序构的高分子诊疗材料[J].高分子学报,2022,53(07):769-783. DOI: 10.11777/j.issn1000-3304.2022.22058.
Zhang Hao,Li Chang-hua.Polymeric Materials with J-Stacked Photo-functional Moieties for Disease Diagnosis and Therapy[J].ACTA POLYMERICA SINICA,2022,53(07):769-783. DOI: 10.11777/j.issn1000-3304.2022.22058.
染料分子有序的J-型聚集会产生新的独特光物理性质,使其成为一种构筑高性能疾病诊疗材料的有力手段. 光功能基元J-型序构的高分子诊疗材料充分整合了染料J-聚集体诸多优异的光学性能以及聚合物的响应性、多功能集成性和生物相容性等众多优良特性. 本文主要总结了该领域以本课题组为代表的近期开展的一些研究工作,具体包括:(1)构筑水相稳定的J-聚集体纳米材料,使其在复杂生命体系中保持必要的J-型排列;(2)利用聚合物辅助纳米J-聚集体实现形貌调控与重塑,以提升其肿瘤诊疗性能;(3)聚合物纳米J-聚集体的性能优化与癌症诊疗应用,包括可穿透深层组织的近红外-Ⅱ成像、克服光漂白的光热治疗、疾病标志物激活的精准光动力治疗等. 功能基元J-型序构策略为光诊疗材料的开发带来了新的设计原理和制备方法,为探索具有更高性能的高分子/超分子光功能诊疗材料提供了广阔的设计空间.
Controlling dye molecules into a highly ordered J-type sliding arrangement/packing induces exciton coupling to enable new photophysical properties
which makes J-aggregation a powerful tool to construct efficient photoactive materials for disease diagnosis and treatment. In particular
the significant red-shift of absorption and emission peak
enhanced absorbanc
e
and narrowed spectral lines enable deep tissue penetration of photons
high photon utilization
and multi-channels optical diagnosis and therapy
respectively. However
J-aggregates have difficulty in maintaining the necessary dye alignment in complex living settings
impeding their biomedical applications. Furthermore
the difficulty in forming nanostructures with appropriate morphology and size is another obstacle to the
in vivo
applications of J-aggregates. Polymeric nanoassemblies formed by self-assembly of amphiphilic block copolymers have been widely used as drug delivery vehicles due to their intriguing properties
such as stimuli responsiveness
multifunctional integration
and biocompatibility. Therefore
covalent conjugation with polymers and/or encapsulation by polymer assemblies provide an efficient strategy for constructing optical and colloidal stable J-aggregate materials for biological applications. In this review
we summarize recent advances in polymeric materials with J-stacked dyes for disease diagnosis and therapy
including: (i) establishing facile strategies to construct water-stable polymeric or supramolecular J-aggregate nanomaterials to maintain the necessary J-type arrangement in complex living systems
(ii) developing robust methods to remodel J-aggregates nanoassemblies with the assistance of polymers to obtain nano J-aggregates with desired morphology and size to improve their
in vivo
performances in tumor diagnosis and therapy
and (iii) devising and constructing novel polymeric nano-J-aggregates with remarkable performances in cancer diagnostic and therapeutic applications
such as near-infrared-Ⅱ imaging agents with high tissue penetration depth
non-photobleaching photothermal agents for cancer photothermal therapy
and activatable photosensitizers in response to disease biomarkers for precise photodynamic therapy. In light of the unique photophysical and photochemical properties of J-aggregates and fascinating properties of polymers
this new
type of polymeric materials with J-stacked photo-functional moieties bring new design principles and preparation methods for the development of phototherapeutic materials
and opens a gateway to the explore polymer/supramolecular phototherapeutic materials with higher performance.
光活性功能高分子诊疗高分子材料非共价键作用J-聚集分子自组装
Photoactive functional polymerDiagnostic and therapeutic polymer materialNoncovalent interactionJ-aggregationMolecular self-assembly
Klan P, Solomek T, Bochet C G, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Chem Rev, 2013, 113(1): 119-191. doi:10.1021/cr300177khttp://dx.doi.org/10.1021/cr300177k
Donthamsetti P C, Broichhagen J, Vyklicky V, Stanley C, Fu Z, Visel M, Levitz J L, Javitch J A, Trauner D, Isacoff E Y. J Am Chem Soc, 2019, 141(29): 11522-11530. doi:10.1021/jacs.9b02895http://dx.doi.org/10.1021/jacs.9b02895
Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Nat Chem, 2017, 9: 279-286. doi:10.1038/nchem.2648http://dx.doi.org/10.1038/nchem.2648
Kumar G S, Lin Q. Chem Rev, 2021, 121(12): 6991-7031. doi:10.1021/acs.chemrev.0c00799http://dx.doi.org/10.1021/acs.chemrev.0c00799
Weinstain R, Slanina T, Kand D, Klan P. Chem Rev, 2020, 120(24): 13135-13272. doi:10.1021/acs.chemrev.0c00663http://dx.doi.org/10.1021/acs.chemrev.0c00663
Jung H S, Verwilst P, Sharma A, Shin J, Sessler J L, Kim J S. Chem Soc Rev, 2018, 47: 2280-2297. doi:10.1039/c7cs00522ahttp://dx.doi.org/10.1039/c7cs00522a
Yun S H, Kwok S J J. Nat Biomed Eng, 2017, 1: 0008. doi:10.1038/s41551-016-0008http://dx.doi.org/10.1038/s41551-016-0008
Chen S, Weitemier A Z, Zeng X, He L M, Wang X Y, Tao Y Q, Huang A J Y, Hashimotodani Y, Kano M, Iwasaki H, Parajuli L K, Okabe S, Teh D B L, All A H, Tsutsui-Kimura I, Tanaka K F, Liu X G, McHugh T J. Science, 2018, 359(6376): 679-683. doi:10.1126/science.aaq1144http://dx.doi.org/10.1126/science.aaq1144
Hu J J, Lei Q, Zhang X Z. Prog Mater Sci, 2020, 114: 100685. doi:10.1016/j.pmatsci.2020.100685http://dx.doi.org/10.1016/j.pmatsci.2020.100685
Lucky S S, Soo K C, Zhang Y. Chem Rev, 2015, 115(4): 1990-2042. doi:10.1021/cr5004198http://dx.doi.org/10.1021/cr5004198
Huang J G, Pu K Y. Angew Chem Int Ed, 2020, 59(29): 11717-11731. doi:10.1002/anie.202001783http://dx.doi.org/10.1002/anie.202001783
Hu J M, Liu S Y. Macromolecules, 2010, 43(20): 8315-8330. doi:10.1021/ma1005815http://dx.doi.org/10.1021/ma1005815
Su M H, Li S X, Zhang H, Zhang J Q, Chen H L, Li C H. J Am Chem Soc, 2019, 141(1): 402-413. doi:10.1021/jacs.8b10396http://dx.doi.org/10.1021/jacs.8b10396
Su M H, Han Q J, Yan X S, Liu Y N, Luo P, Zhai W H, Zhang Q Z, Li L Y, Li C H. ACS Nano, 2021, 15(3): 5032-5042. doi:10.1021/acsnano.0c09993http://dx.doi.org/10.1021/acsnano.0c09993
Li S X, Yan X S, Zhang J Q, Guo X, Zhang Y K, Su M H, Yang C, Zhang H, Li C H. Adv Funct Mater, 2021, 31(51): 2105189. doi:10.1002/adfm.202105189http://dx.doi.org/10.1002/adfm.202105189
Yan X S, Su M H, Liu Y N, Zhang Y K, Zhang H, Li C H. Adv Funct Mater, 2021, 31(9): 2008406. doi:10.1002/adfm.202008406http://dx.doi.org/10.1002/adfm.202008406
Sun P, Wu Q, Sun X, Miao H, Deng W, Zhang W, Fan Q, Huang W. Chem Commun, 2018, 54(95): 13395-13398. doi:10.1039/c8cc08096hhttp://dx.doi.org/10.1039/c8cc08096h
Sun C X, Li B H, Zhao M Y, Wang S F, Lei Z H, Lu L F, Zhang H X, Feng L S, Dou C R, Yin D R, Xu H X, Cheng Y S, Zhang F. J Am Chem Soc, 2019, 141(49): 19221-19225. doi:10.1021/jacs.9b10043http://dx.doi.org/10.1021/jacs.9b10043
Chen W, Cheng C A, Cosco E D, Ramakrishnan S, Lingg J G P, Bruns O T, Zink J I, Sletten E M. J Am Chem Soc, 2019, 141(32): 12475-12480. doi:10.1021/jacs.9b05195http://dx.doi.org/10.1021/jacs.9b05195
Li K, Duan X C, Jiang Z Y, Ding D, Chen Y C, Zhang G Q, Liu Z P. Nat Commun, 2021, 12: 2376. doi:10.1038/s41467-021-22686-zhttp://dx.doi.org/10.1038/s41467-021-22686-z
Scheibe G. Angew Chem, 1937, 50(11): 212-219. doi:10.1002/ange.19370501103http://dx.doi.org/10.1002/ange.19370501103
Jelley E E. Nature, 1937, 139: 631-632. doi:10.1038/139631b0http://dx.doi.org/10.1038/139631b0
Würthner F, Kaiser T E, Saha-Möller C R. Angew Chem Int Ed, 2011, 50(15): 3376-3410. doi:10.1002/anie.201002307http://dx.doi.org/10.1002/anie.201002307
McRae E G, Kasha M. J Chem Phys, 1958, 28: 721-722. doi:10.1063/1.1744225http://dx.doi.org/10.1063/1.1744225
Kasha M, Rawls H R, El-Bayoumi M A. Pure Appl Chem, 1965, 11(3-4): 371-392
Holzwarth A R, Schaffner K. Photosynth Res, 1994, 41: 225-233. doi:10.1007/bf02184163http://dx.doi.org/10.1007/bf02184163
Orf G S, Blankenship R E. Photosynth Res, 2013, 116: 315-331. doi:10.1007/s11120-013-9869-3http://dx.doi.org/10.1007/s11120-013-9869-3
Eisele D M, Knoester J, Kirstein S, Rabe J P, vanden Bout D A. Nat Nanotech, 2009, 4: 658-663. doi:10.1038/nnano.2009.227http://dx.doi.org/10.1038/nnano.2009.227
Herbst S, Soberats B, Leowanawat P, Stolte M, Lehmann M, Würthner F. Nat Commun, 2018, 9: 2646. doi:10.1038/s41467-018-05018-6http://dx.doi.org/10.1038/s41467-018-05018-6
Hestand N J, Kazantsev R V, Weingarten A S, Palmer L C, Stupp S I, Spano F C. J Am Chem Soc, 2016, 138(36): 11762-11774. doi:10.1021/jacs.6b05673http://dx.doi.org/10.1021/jacs.6b05673
Liu K, Xing R R, Li Y X, Zou Q L, Möhwald H, Yan X H. Angew Chem Int Ed, 2016, 55(40): 12503-12507. doi:10.1002/anie.201606795http://dx.doi.org/10.1002/anie.201606795
Liu K, Zhang H, Xing R R, Zou Q L, Yan X H. ACS Nano, 2017, 11(12): 12840-12848. doi:10.1021/acsnano.7b08215http://dx.doi.org/10.1021/acsnano.7b08215
Smiley S T, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith T W, Steele Jr G D, Chen L B. PNAS, 1991, 88(9): 3671-3675. doi:10.1073/pnas.88.9.3671http://dx.doi.org/10.1073/pnas.88.9.3671
Yang C J, Wang X C, Wang M F, Xu K M, Xu C J. Chem Eur J, 2017, 23(18): 4310-4319. doi:10.1002/chem.201604741http://dx.doi.org/10.1002/chem.201604741
Liu Y, Yang G Z, Jin S, Zhang R, Chen P, Tengjisi Wang L Z, Chen D, Weitz D A, Zhao C X. Angew Chem Int Ed, 2020, 59(45): 20065-20074. doi:10.1002/anie.202008018http://dx.doi.org/10.1002/anie.202008018
He H, Ji S S, He Y, Zhu A J, Zou Y L, Deng Y B, Ke H T, Yang H, Zhao Y L, Guo Z Q, Chen H B. Adv Mater, 2017, 29(19): 1606690. doi:10.1002/adma.201606690http://dx.doi.org/10.1002/adma.201606690
Fan G, Lin Y H, Yang L, Gao F P, Zhao Y X, Qiao Z Y, Zhao Q, Fan Y S, Chen Z J, Wang H. Chem Commun, 2015, 51(62): 12447-12450. doi:10.1039/c5cc04757ahttp://dx.doi.org/10.1039/c5cc04757a
Ishida M, Omagari T, Hirosawa R, Jono K, Sung Y M, Yasutake Y, Uno H, Toganoh M, Nakanotani H, Fukatsu S, Kim D, Furuta H. Angew Chem Int Ed, 2016, 55(39): 12045-12049. doi:10.1002/anie.201606246http://dx.doi.org/10.1002/anie.201606246
Filatov M A, Karuthedath S, Polestshuk P M, Savoie H, Flanagan K J, Sy C, Sitte E, Telitchko M, Laquai F, Boyle R W, Senge M O. J Am Chem Soc, 2017, 139(18): 6282-6285. doi:10.1021/jacs.7b00551http://dx.doi.org/10.1021/jacs.7b00551
Chen H L, He X J, Su M H, Zhai W H, Zhang H, Li C H. J Am Chem Soc, 2017, 139(29): 10157-10163. doi:10.1021/jacs.7b05920http://dx.doi.org/10.1021/jacs.7b05920
Chen Z J, Liu Y, Wagner W, Stepanenko V, Ren X K, Ogi S, Würthner F. Angew Chem Int Ed, 2017, 56(21): 5729-5733. doi:10.1002/anie.201701788http://dx.doi.org/10.1002/anie.201701788
Su M H, Yan X S, Guo X, Li Q W, Zhang Y S, Li C H. Chem Eur J, 2020, 26(20): 4505-4509. doi:10.1002/chem.202000462http://dx.doi.org/10.1002/chem.202000462
Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem Rev, 2016, 116(4): 2478-2601. doi:10.1021/acs.chemrev.5b00484http://dx.doi.org/10.1021/acs.chemrev.5b00484
Liu C Z, Koppireddi S, Wang H, Zhang D W, Li Z T. Angew Chem Int Ed, 2019, 58(1): 226-230. doi:10.1002/anie.201811561http://dx.doi.org/10.1002/anie.201811561
Ding X H, Chang Y Z, Ou C J, Lin J Y, Xie L H, Huang W. Natl Sci Rev, 2020,7(12): 1906-1932. doi:10.1093/nsr/nwaa170http://dx.doi.org/10.1093/nsr/nwaa170
Cheng M H Y, Harmatys K M, Charron D M, Chen J, Zheng G. Angew Chem Int Ed, 2019, 58(38): 13394-13399. doi:10.1002/anie.201907754http://dx.doi.org/10.1002/anie.201907754
Wang S, Huang P, Chen X Y. Adv Mater, 2016, 28(34): 7340. doi:10.1002/adma.201601498http://dx.doi.org/10.1002/adma.201601498
Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Nat Rev Cancer, 2017, 17(1): 20-37. doi:10.1038/nrc.2016.108http://dx.doi.org/10.1038/nrc.2016.108
Hong G S, Antaris A L, Dai H J. Nat Biomed Eng, 2017, 1: 0010. doi:10.1038/s41551-016-0010http://dx.doi.org/10.1038/s41551-016-0010
Pansare V J, Hejazi S, Faenza W J, Prud'homme R K. Chem Mater, 2012, 24(5): 812-827. doi:10.1021/cm2028367http://dx.doi.org/10.1021/cm2028367
Kenry, Duan Y, Liu B. Adv Mater, 2018, 30(47): 1802394
Lü B Z, Chen Y F, Li P Y, Wang B, Müllen K, Yin M Z. Nat Commun, 2019, 10: 767. doi:10.1038/s41467-019-08434-4http://dx.doi.org/10.1038/s41467-019-08434-4
Wang Y, Zhu W G, Du W N, Liu X F, Zhang X T, Dong H L, Hu W P. Angew Chem Int Ed, 2018, 57(15): 3963-3967. doi:10.1002/anie.201712949http://dx.doi.org/10.1002/anie.201712949
Zhao Z, Chen C, Wu W T, Wang F F, Du L L, Zhang X Y, Xiong Y, He X W, Cai Y J, Kwok R T K, Lam J W Y, Gao X K, Sun P C, Phillips D L, Ding D, Tang B Z. Nat Commun, 2019, 10: 768. doi:10.1038/s41467-019-08722-zhttp://dx.doi.org/10.1038/s41467-019-08722-z
Na S, Russin J J, Lin L, Yuan X Y, Hu P, Jann K B, Yan L R, Maslov K, Shi J H, Wang D J, Liu C Y, Wang L V. Nat Biomed Eng, 2021, DOI: 10.1038/s41551-021-00735-8http://dx.doi.org/10.1038/s41551-021-00735-8
Sampedro A, Ramos-Torres Á, Schwöppe C, Mück-Lichtenfeld C, Helmers I, Bort A, Díaz-Laviada I, Fernández G. Angew Chem Int Ed, 2018, 57(52): 17235-17239. doi:10.1002/anie.201804783http://dx.doi.org/10.1002/anie.201804783
Liu Y N, Wang H, Li S L, Chen C S, Xu L, Huang P, Liu F, Su Y, Qi M W, Yu C Y, Zhou Y F. Nat Commun, 2020, 11: 1724. doi:10.1038/s41467-020-15427-1http://dx.doi.org/10.1038/s41467-020-15427-1
Guo Z Q, He H, Zhang Y, Rao J M, Yang T, Li T, Wang L, Shi M K, Wang M Y, Qiu S H, Song X, Ke H T, Chen H B. Adv Mater, 2021, 33(2): 2004225. doi:10.1002/adma.202004225http://dx.doi.org/10.1002/adma.202004225
Zou Q L, Abbas M, Zhao L Y, Li S K, Shen G Z, Yan X H. J Am Chem Soc, 2017, 139(5): 1921-1927. doi:10.1021/jacs.6b11382http://dx.doi.org/10.1021/jacs.6b11382
Yang C, Su M H, Luo P, Liu Y N, Yang F, Li C H. Small, 2021, 17(29): 2101180. doi:10.1002/smll.202101180http://dx.doi.org/10.1002/smll.202101180
Wehner M, Würthner F. Nat Rev Chem, 2020, 4: 38-53. doi:10.1038/s41570-019-0153-8http://dx.doi.org/10.1038/s41570-019-0153-8
Makam P, Yamijala S S R K C, Tao K, Shimon L J W, Eisenberg D S, Sawaya M R, Wong B M, Gazit E. Nat Catal, 2019, 2: 977-985. doi:10.1038/s41929-019-0348-xhttp://dx.doi.org/10.1038/s41929-019-0348-x
Kumar M, Brocorens P, Tonnelé C, Beljonne D, Surin M, George S J. Nat Commun, 2014, 5: 5793. doi:10.1038/ncomms6793http://dx.doi.org/10.1038/ncomms6793
Li C H, Zhang Y X, Hu J M, Cheng J J, Liu S Y. Angew Chem Int Ed, 2010, 49(30): 5120-5124. doi:10.1002/anie.201002203http://dx.doi.org/10.1002/anie.201002203
Wahsner J, Gale E M, Rodriguez-Rodriguez A, Caravan P. Chem Rev, 2019, 119(2): 957-1057. doi:10.1021/acs.chemrev.8b00363http://dx.doi.org/10.1021/acs.chemrev.8b00363
0
Views
149
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution