浏览全部资源
扫码关注微信
四川大学化学学院 环境与火安全高分子材料省部共建协同创新中心 高分子材料国家重点实验室 环保型高分子材料国家地方联合工程实验室 成都 610064
Published:20 July 2022,
Published Online:06 June 2022,
Received:01 March 2022,
Accepted:29 March 2022
移动端阅览
张佳燕,刘博文,王玉忠等.聚氨酯泡沫无卤阻燃研究进展[J].高分子学报,2022,53(07):842-855.
Zhang Jia-yan,Liu Bo-wen,Wang Yu-zhong,et al.Recent Advances in Halogen-free Flame-retardant Polyurethane Foams[J].ACTA POLYMERICA SINICA,2022,53(07):842-855.
张佳燕,刘博文,王玉忠等.聚氨酯泡沫无卤阻燃研究进展[J].高分子学报,2022,53(07):842-855. DOI: 10.11777/j.issn1000-3304.2022.22062.
Zhang Jia-yan,Liu Bo-wen,Wang Yu-zhong,et al.Recent Advances in Halogen-free Flame-retardant Polyurethane Foams[J].ACTA POLYMERICA SINICA,2022,53(07):842-855. DOI: 10.11777/j.issn1000-3304.2022.22062.
聚氨酯泡沫塑料是用量最大的泡沫材料之一,具有低密度、高强度、耐腐蚀、高隔热等优点,广泛应用于防震、减震、软性衬垫材料和建筑隔热保温等多个领域. 然而,聚氨酯泡沫高度易燃,燃烧时伴随大量热和有毒烟气释放,对人民生命财产安全造成严重威胁. 传统的含卤阻燃由于生物毒性及环境累积性受到严重限制,无卤阻燃已成为聚氨酯泡沫阻燃的发展趋势. 本文介绍了聚氨酯泡沫的燃烧特点及阻燃机理,从添加型、反应型和表面后处理的不同阻燃方式阐述了聚氨酯泡沫无卤阻燃的研究进展,并深入分析了这些研究对泡沫阻燃的贡献、作用机理及关键影响因素,最后对聚氨酯泡沫的阻燃研究前景进行了展望,环境友好、高效、高阻燃抑烟、可循环回收是聚氨酯泡沫阻燃未来发展的重要方向.
Polyurethane foams (PUFs) with a porous-cell structure and low density
including rigid polyurethane foam (RPUF) and flexible polyurethane foam (FPUF)
have a wide range of applications and can meet multifarious requirements in daily life. However
PUFs are easy to ignite owing to their high contents of hydrocarbon chain segments
large specific surface area
and low limiting oxygen index (LOI) of 17%-19%. When PUFs are ignited and burned
the fire spreads rapidly
and large volumes of toxic fumes will be released concomitantly
which bring serious negative influences on the human body and the environment. Flame retardants assuage the threat of fire from inherently flammable PUF materials. Driven by global environmental concerns
halogen-free flame retardants of PUFs have grabbed extensive attention. This review summarizes the combustion characteristics and flame-retardant mechanism of polyurethane foams
and enumerates the recent progress of the reactive
additive
and surface flame-retardant strategies
focusing on an in-depth analysis of the different contributions and mechanisms of these studies. The difference and similarities of the combustion behaviors and flame-retardant methods for RPUF and FPUF are analyzed in detail. Finally
crucial objections correlated with flame-retardant PUFs are discussed
and prospects and new development strategies for flame retardancy are proposed. How to maintain the comprehensive performance of the foam and achieve high-efficiency flame retardancy is the key and difficult point in the practical research and application of PUF. To tackle the above problems
highly efficient flame-retardant reactive molecules or nanoscale additives can be designed to improve the compatibility of flame retardants with the matrix. The durability of flame-retardant coatings can be enhanced by high-adhesion coating component regulation
surface modification pretreatment
and biomimetic design. Breaking through the conceptual limitations of traditional flame-retardant methods
a variety of flame-retardant methods can be combined reasonably and complement each other to achieve the best effect. Environmental friendliness
high efficiency
high flame-retardant and smoke suppression
and recyclability are important directions for the future development of flame-retardant PUFs.
聚氨酯泡沫无卤阻燃阻燃机理阻燃方法
Polyurethane foamHalogen-free flame retardancyFlame-retardant mechanismFlame-retardant method
Kausar A. Polym Plast Technol Eng, 2017, 57(4): 346-369. doi:10.1080/03602559.2017.1329433http://dx.doi.org/10.1080/03602559.2017.1329433
Sundström B. Fire Mater, 2020, 45(1): 97-113. doi:10.1002/fam.2920http://dx.doi.org/10.1002/fam.2920
Gama N V, Ferreira A, Barros-Timmons A. Materials, 2018, 11(10): 1841. doi:10.3390/ma11101841http://dx.doi.org/10.3390/ma11101841
Dernehl C U. J Occup Med, 1966, 8(2): 59-62 doi:https://www.jstor.org/stable/45003937https://www.jstor.org/stable/45003937
Skleničková K, Abbrent S, Halecký M, Kočí V, Beneš H. Crit Rev Env Sci Technol, 2020, 52(2): 157-202. doi:10.1016/j.jwpe.2021.102455http://dx.doi.org/10.1016/j.jwpe.2021.102455
Cooper E M, Kroeger G, Davis K, Clark C R, Ferguson P L, Stapleton H M. Environ Sci Technol, 2016, 50(19): 10653-10660. doi:10.1021/acs.est.6b01602http://dx.doi.org/10.1021/acs.est.6b01602
Noyes P D, Haggard D E, Gonnerman G D, Tanguay R L. Toxicol Sci, 2015, 145(1): 177-195. doi:10.1093/toxsci/kfv044http://dx.doi.org/10.1093/toxsci/kfv044
Shaw S S. Rev Environ Health, 2010, 25(4): 261-306 doi:10.1515/REVEH.2010.25.4.261http://dx.doi.org/10.1515/REVEH.2010.25.4.261
Alaee M. Environ Int, 2003, 29(6): 683-689. doi:10.1016/s0160-4120(03)00121-1http://dx.doi.org/10.1016/s0160-4120(03)00121-1
Chattopadhyay D K, Webster D C. Prog Polym Sci, 2009, 34(10): 1068-1133. doi:10.1016/j.progpolymsci.2009.06.002http://dx.doi.org/10.1016/j.progpolymsci.2009.06.002
Chen Mingjun(陈明军). Journal of Xihua University(西华大学学报), 2020, 39(5): 57-66. doi:10.12198/j.issn.1673-159X.0004http://dx.doi.org/10.12198/j.issn.1673-159X.0004
Lazar S T, Kolibaba T J, Grunlan J C. Nat Rev Mater, 2020, 5(4): 259-275. doi:10.1038/s41578-019-0164-6http://dx.doi.org/10.1038/s41578-019-0164-6
Singh H, Jain A K. J Appl Polym Sci, 2009, 111: 1115-1143. doi:10.1002/app.v111:1http://dx.doi.org/10.1002/app.v111:1
Levchik S V, Weil E D. Polym Int, 2004, 53(11): 1585-1610. doi:10.1002/pi.1314http://dx.doi.org/10.1002/pi.1314
Liu X, Hao J, Gaan S. RSC Adv, 2016, 6(78): 74742-74756. doi:10.1039/c6ra14345hhttp://dx.doi.org/10.1039/c6ra14345h
Lorenzetti A, Dittrich B, Schartel B, Roso M, Modesti M. J Appl Polym Sci, 2017, 134(31): 45173. doi:10.1002/app.45173http://dx.doi.org/10.1002/app.45173
Ai Y F, Xia L, Pang F Q, Xu Y L, Zhao H B, Jian R K. Compos B Eng, 2020, 193: 108019. doi:10.1016/j.compositesb.2020.108019http://dx.doi.org/10.1016/j.compositesb.2020.108019
Chen L, Wang Y Z. Polym Adv Technol, 2010, 21: 1-26. doi:10.1002/pat.v21:1http://dx.doi.org/10.1002/pat.v21:1
Lorenzetti A, Modesti M, Besco S, Hrelja D, Donadi S. Polym Degrad Stab, 2011, 96(8): 1455-1461. doi:10.1016/j.polymdegradstab.2011.05.012http://dx.doi.org/10.1016/j.polymdegradstab.2011.05.012
Liu B W, Zhao H B, Wang Y Z. Adv Mater, 2022, 2107905: 1-36. doi:10.1002/adfm.202270063http://dx.doi.org/10.1002/adfm.202270063
Luo F B, Wu K, Li D F, Zheng J, Guo H L, Zhao Q, Lu M G. Polym Composite, 2017, 38(12): 2762-2770. doi:10.1002/pc.23874http://dx.doi.org/10.1002/pc.23874
He L, Chen T, Zhang Y, Hu L R, Wang T, Han R, He J L, Luo W, Liu Z G, Deng N J, Chen M J. Compos B Eng, 2022, 230: 109553. doi:10.1016/j.compositesb.2021.109553http://dx.doi.org/10.1016/j.compositesb.2021.109553
Wang C Q, Lv H N, Sun J, Cai Z S. Polym Eng Sci, 2014, 54(11): 2497-2507. doi:10.1002/pen.23794http://dx.doi.org/10.1002/pen.23794
Zhu M H, Ma Z W, Liu L, Zhang J Z, Huo S Q, Song P A. J Mater Sci Technol, 2022, 112: 315-328. doi:10.1016/j.jmst.2021.09.062http://dx.doi.org/10.1016/j.jmst.2021.09.062
Liu W, Li F, Ge X G, Zhang Z J, He J, Gao N. Mater Sci Eng, 2016, 137: 012037. doi:10.1088/1757-899x/137/1/012037http://dx.doi.org/10.1088/1757-899x/137/1/012037
Chen X L, Huo L L, Jiao C M, Li S X. J Anal Appl Pyrolysis, 2013, 100: 186-191. doi:10.1016/j.jaap.2012.12.017http://dx.doi.org/10.1016/j.jaap.2012.12.017
Eilbracht C, Sicken M. DE Pat, US patent, 6, 380, 273. 2002-04-30
Mauric C, Wolf R. CH Pat, US patent, 4, 388, 431. 1983-06-14
Chen M J, Xu Y J, Rao W H, Huang J Q, Wang X L, Chen L, Wang Y Z. Ind Eng Chem Res, 2014, 53(21): 8773-8783. doi:10.1021/ie500691phttp://dx.doi.org/10.1021/ie500691p
Price D, Liu Y, Milnes G J, Hull R, Kandola B K, Horrocks A R. Fire Mater, 2002, 26: 201-206. doi:10.1002/fam.810http://dx.doi.org/10.1002/fam.810
Cheng J J, Qu W J, Sun S H. Polym Composite, 2018, 40(2): 1006-1014. doi:10.1002/pc.24786http://dx.doi.org/10.1002/pc.24786
Cao Z J, Dong X, Fu T, Deng S B, Liao W, Wang Y Z. Polym Degrad Stab, 2017, 136: 103-111. doi:10.1016/j.polymdegradstab.2016.12.004http://dx.doi.org/10.1016/j.polymdegradstab.2016.12.004
Chen M J, Shao Z B, Wang X L, Chen L, Wang Y Z. Ind Eng Chem Res, 2012, 51(29): 9769-9776. doi:10.1021/ie301004dhttp://dx.doi.org/10.1021/ie301004d
Rao W H, Hu Z Y, Xu H X, Xu Y J, Qi M, Liao W, Wang Y Z. Ind Eng Chem Res, 2017, 56(25): 7112-7119. doi:10.1021/acs.iecr.7b01335http://dx.doi.org/10.1021/acs.iecr.7b01335
Dong F H, Wang Y Q, Wang S B, Shaghaleh H, Sun P H, Huang X J, Xu X, Wang S H, Liu H. React Funct Polym, 2021, 168: 105057. doi:10.1016/j.reactfunctpolym.2021.105057http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105057
Xiahou Guolun(夏侯国论), Liu Weiqu(刘伟区), Tan Jianquan(谭建权), Wang Honglei(王红蕾), He Dao(何导). Acta Polymerica Sinica(高分子学报), 2015, (4): 444-450. doi:10.11777/j.issn1000-3304.2015.14315http://dx.doi.org/10.11777/j.issn1000-3304.2015.14315
Shi Shenwei(施申伟), Li Ting(李婷), Wang Yang(汪洋), Dong Weifu(东为富). Acta Polymerica Sinica(高分子学报), 2019, (7): 721-729. doi:10.11777/j.issn1000-3304.2019.19009http://dx.doi.org/10.11777/j.issn1000-3304.2019.19009
Yu Shen(于深), Zhang Rongchun(张荣纯), Sun Pingchuan(孙平川). Acta Polymerica Sinica(高分子学报), 2014, (1):72-79. doi:10.3724/sp.j.1105.2014.13156http://dx.doi.org/10.3724/sp.j.1105.2014.13156
Jayakody C, Myers D, Sorathia U, Nelson G L. J Fire Sci, 2000, 18(6): 430-455. doi:10.1106/4egw-lh1c-xfbj-afwlhttp://dx.doi.org/10.1106/4egw-lh1c-xfbj-afwl
Kim H, Park J, Minn K S, Pak S Y, Lee D, Youn J R, Song Y S. Fiber Polym, 2019, 20(11): 2280-2288. doi:10.1007/s12221-019-9491-xhttp://dx.doi.org/10.1007/s12221-019-9491-x
Wang T, Long M C, Zhao H B, An W L, Xu S M, Deng C, Wang Y Z. Chem Mater, 2021, 33: 6018-6028. doi:10.1021/acs.chemmater.1c01408http://dx.doi.org/10.1021/acs.chemmater.1c01408
He W T, Song P A, Yu B, Fang Z P, Wang H. Prog Mater Sci, 2020, 114: 100687. doi:10.1016/j.pmatsci.2020.100687http://dx.doi.org/10.1016/j.pmatsci.2020.100687
Zhang A Z, Zhang Y H, Lv F Z, Chu P K. J Appl Polym Sci, 2013, 128(1): 347-353. doi:10.1002/app.38200http://dx.doi.org/10.1002/app.38200
Liu Y L, He J Y, Yang R H. Ind Eng Chem Res, 2015, 54(22): 5876-5884. doi:10.1021/acs.iecr.5b01019http://dx.doi.org/10.1021/acs.iecr.5b01019
Zhao W, Zhao H B, Cheng J B, Li W X, Zhang J Y, Wang Y Z. Chem Eng J, 2022, 440: 135807. doi:10.1016/j.cej.2022.135807http://dx.doi.org/10.1016/j.cej.2022.135807
Cao Z J, Liao W, Wang S X, Zhao H B, Wang Y Z. Chem Eng J, 2019, 361: 1245-1254. doi:10.1016/j.cej.2018.12.176http://dx.doi.org/10.1016/j.cej.2018.12.176
Wang Y Q, Cheng J B, Liu B W, Fu Q, Zhao H B, Wang Y Z. Nanomicro Lett, 2022, 14(1): 1-15. doi:10.1007/s40820-022-00817-5http://dx.doi.org/10.1007/s40820-022-00817-5
Araby S, Philips B, Meng Q, Ma J, Laoui T, Wang C H. Compos B Eng, 2021, 212: 108675. doi:10.1016/j.compositesb.2021.108675http://dx.doi.org/10.1016/j.compositesb.2021.108675
Rao W H, Zhao P, Yu C B, Zhao H B, Wang Y Z. Compos B Eng, 2H021, 211: 108640
Yin Z T, Lu J Y, Hong N N, Cheng W H, Jia P F, Wang H, Hu W Z, Wang B B, Song L, Hu Y. J Colloid Interface Sci, 2022, 607(2): 1300-1312. doi:10.1016/j.jcis.2021.09.027http://dx.doi.org/10.1016/j.jcis.2021.09.027
Jia P F, Ma C, Lu J Y, Yang W H, Jiang X, Jiang G Y, Yin Z T, Qiu H, Qian L J, Yu X L, Hu Y, Hu W Z, Wang B B. J Colloid Interface Sci, 2022, 606(2): 1205-1218. doi:10.1016/j.jcis.2021.08.139http://dx.doi.org/10.1016/j.jcis.2021.08.139
Zhao H B, Wang Y Z. Macromol Rapid Commun, 2017, 38(23): 1700451. doi:10.1002/marc.201700451http://dx.doi.org/10.1002/marc.201700451
Wang X L, Yang K K, Wang Y Z. J Appl Polym Sci, 2001, 82(2): 276-282. doi:10.1002/app.1849http://dx.doi.org/10.1002/app.1849
Chen M J, Chen C R, Tan Y, Huang J Q, Wang X L, Chen L, Wang Y Z. Ind Eng Chem Res, 2014, 53(3): 1160-1171. doi:10.1021/ie4036753http://dx.doi.org/10.1021/ie4036753
Rao W H, Xu H X, Xu Y J, Qi M, Liao W, Xu S, Wang Y Z. Chem Eng J, 2018, 343: 198-206. doi:10.1016/j.cej.2018.03.013http://dx.doi.org/10.1016/j.cej.2018.03.013
Wang S X, Zhao H B, Rao W H, Huang S C, Wang T, Liao W, Wang Y Z. Polymer, 2018, 153: 616-625. doi:10.1016/j.polymer.2018.08.068http://dx.doi.org/10.1016/j.polymer.2018.08.068
Lu W M, Jin Z F. Polym Degrad Stab, 2022, 195: 109768. doi:10.1016/j.polymdegradstab.2021.109768http://dx.doi.org/10.1016/j.polymdegradstab.2021.109768
Rao W H, Liao W, Wang H, Zhao H B, Wang Y Z. J Hazard Mater, 2018, 360: 651-660. doi:10.1016/j.jhazmat.2018.08.053http://dx.doi.org/10.1016/j.jhazmat.2018.08.053
Ma C, Qiu S L, Xiao Y L, Zhang K, Zheng Y P, Xing W Y, Hu Y. Chem Eng J, 2022, 431: 133347. doi:10.1016/j.cej.2021.133347http://dx.doi.org/10.1016/j.cej.2021.133347
Zhang A N, Zhao H B, Cheng J B, Li M E, Li S L, Cao M, Wang Y Z. Chem Eng J, 2021, 410: 128361. doi:10.1016/j.cej.2020.128361http://dx.doi.org/10.1016/j.cej.2020.128361
Davesne A L, Jimenez M, Samyn F, Bourbigot S. Prog Org Coat, 2021, 154: 106217. doi:10.1016/j.porgcoat.2021.106217http://dx.doi.org/10.1016/j.porgcoat.2021.106217
Qiu X Q, Li Z W, Li X H, Zhang Z J. Chem Eng J, 2018, 334: 108-122. doi:10.1016/j.cej.2017.09.194http://dx.doi.org/10.1016/j.cej.2017.09.194
Kim Y S, Davis R, Cain A A, Grunlan J C. Polymer, 2011, 52(13): 2847-2855. doi:10.1016/j.polymer.2011.04.023http://dx.doi.org/10.1016/j.polymer.2011.04.023
Laufer G, Kirkland C, Cain A A, Grunlan J C. ACS Appl Mater Interfaces, 2012, 4(3): 1643-1649. doi:10.1021/am2017915http://dx.doi.org/10.1021/am2017915
Meng D, Liu X D, Wang S H, Sun J, Li H F, Wang Z W, Gu X Y, Zhang S. Compos B Eng, 2021, 219: 108886. doi:10.1016/j.compositesb.2021.108886http://dx.doi.org/10.1016/j.compositesb.2021.108886
Cho J H, Vasagar V, Shanmuganathan K, Jones A R, Nazarenko S, Ellison C J. Chem Mater, 2015, 27: 6784-6790. doi:10.1021/acs.chemmater.5b03013http://dx.doi.org/10.1021/acs.chemmater.5b03013
Malucelli G. Coatings, 2016, 6(3): 33. doi:10.3390/coatings6030033http://dx.doi.org/10.3390/coatings6030033
Rao W H, Shi J J, Yu C B, Zhao H B, Wang Y Z. Chem Eng J, 2021, 424: 130556. doi:10.1016/j.cej.2021.130556http://dx.doi.org/10.1016/j.cej.2021.130556
Bellayer S, Jimenez M, Prieur B, Dewailly B, Ramgobin A, Sarazin J, Revel B. Polym Degrad Stab, 2018, 147: 159-167. doi:10.1016/j.polymdegradstab.2017.12.005http://dx.doi.org/10.1016/j.polymdegradstab.2017.12.005
Wang S H, Wang X G, Wang X, Li H F, Sun J, Sun W X, Yao Y, Gu X Y, Zhang S. Chem Eng J, 2020, 385: 123755. doi:10.1016/j.cej.2019.123755http://dx.doi.org/10.1016/j.cej.2019.123755
Chen H B, Shen P, Chen M J, Zhao H B, Schiraldi D A. ACS Appl Mater Interfaces, 2016, 8(47): 32557-32564. doi:10.1021/acsami.6b11659http://dx.doi.org/10.1021/acsami.6b11659
Li M E, Wang S X, Han L X, Yuan W J, Cheng J B, Zhang A N, Zhao H B. J Hazard Mater, 2019, 375: 61-69. doi:10.1016/j.jhazmat.2019.04.065http://dx.doi.org/10.1016/j.jhazmat.2019.04.065
Huang Y B, Jiang S H, Liang R C, Liao Z W, You G X. Compos Part A Appl Sci Manuf, 2019, 125: 105534. doi:10.1016/j.compositesa.2019.105534http://dx.doi.org/10.1016/j.compositesa.2019.105534
Ma Z W, Liu X C, Xu X D, Liu L, Yu B, Maluk C, Huang G B, Wang H, Song P A. ACS Nano, 2021, 15: 11667-11680. doi:10.1021/acsnano.1c02254http://dx.doi.org/10.1021/acsnano.1c02254
0
Views
506
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution