浏览全部资源
扫码关注微信
聚合物复合材料及功能材料教育部重点实验室 中山大学化学学院 广州 510006
Zhe-gang Huang, E-mail: huangzhg3@mail.sysu.edu.cn
Published:20 November 2022,
Published Online:18 August 2022,
Received:15 March 2022,
Accepted:20 April 2022
移动端阅览
许锐,梁振杰,方雅俊等.多相可控的超分子多孔吸附剂对污染物的吸附和分离功能的探索[J].高分子学报,2022,53(11):1372-1378.
Xu Rui,Liang Zhen-jie,Fang Ya-jun,et al.Phase Controllable Supramolecular Porous Adsorbent for Pollutants Adsorption and Separation[J].ACTA POLYMERICA SINICA,2022,53(11):1372-1378.
许锐,梁振杰,方雅俊等.多相可控的超分子多孔吸附剂对污染物的吸附和分离功能的探索[J].高分子学报,2022,53(11):1372-1378. DOI: 10.11777/j.issn1000-3304.2022.22081.
Xu Rui,Liang Zhen-jie,Fang Ya-jun,et al.Phase Controllable Supramolecular Porous Adsorbent for Pollutants Adsorption and Separation[J].ACTA POLYMERICA SINICA,2022,53(11):1372-1378. DOI: 10.11777/j.issn1000-3304.2022.22081.
快速吸附和有效分离是去除污染物的关键技术. 其中,均相吸附剂能与吸附质充分碰撞,在快速吸附方面具备一定优势,但难以从介质中有效去除. 非均相吸附剂容易从体系中分离,但与污染物的作用力较弱,容易引起二次污染. 为此,基于V形两亲性嵌段共聚物的动态组装,构筑了可以实现均相和非均相吸附功能的超分子多孔吸附剂. 120°折叠的芳香性嵌段通过自组装形成疏水性空腔捕获有机污染物,骨架外围的聚乙二醇嵌段具有良好的亲水效应,可助溶多孔吸附剂,使多孔材料具有均相吸附的特征,60 min内实现对双酚A和炔雌醇的高效吸附,其吸附容量分别达到126.5和95.4 mg/g. 受到聚乙二醇的最低临界溶解温度(LCST)效应影响,升温使均相吸附剂转化为非均相吸附剂,促使多孔材料和水相的分离,易于从水体中去除. 基于超分子多孔吸附剂的温度响应行为,在室温下对水污染物进行高效吸附,通过升温实现了与水环境的有效分离,多次吸附—解吸循环实验表明移除效率能够维持在84%以上. 这种结合均相吸附和非均相吸附优势的构筑方法,为净化水体提供了一种新的方案.
Adsorption is an effective method for removing pollutants from water. Among them
homogeneous adsorbents can capture the adsorbates in the medium by effective collision. However
there are some difficulties in effectively removing themd from water. Compared with homogeneous adsorbents
heterogeneous adsorbents are easily separated from the system
but the interaction with pollutants is relatively weak
which may cause secondary pollution. Here
a thermos-responsive tubular adsorbent was presented by dynamic assembly of V-shaped aromatic amphiphiles. The tubular wall based on the assembly of 120-degree folded aromatic segment is very suited for the trap of organic pollutants. In addition
the aromatic pores have excellent water solubility for the surrounding of hydrophilic ethylene oxide segments
showing remarkable removal capacity as well as fast sorption kinetics with homogeneous adsorbent characteristics. The removal capacity is found to be 126.5 mg/g for bisphenol A (BPA) and 95.4 mg/g for ethinyl estradiol (Eo)
respectively
due to the formation of hydrophobic tubular pores in aqueous environment. In addition
the equilibrium time of tubular adsorbents were just 60 min for BPA and 50 min for Eo to achieve complete removal efficiency
which is attributable to the existence of preferable collision with pollutant in aqueous environment for its spherical topology with an efficient hydrophilic surface. Due to the lower critical solution temperature (LCST) effect of ethylene oxide segment
the surface of adsorbent became hydrophobic by thermal triggers
resulting in a phase separation between water and adsorbent. Thus
the removed pollutants as well as adsorbents are easily separated from water through a simple centrifugation. Therefore
a new sewage treatment route is proposed based on the temperature responsive behaviour of supramolecular porous adsorbent. At room temperature
the tubular adsorbent with homogenous characteristics can be used to rapidly trap organic pollutants in water. Then
the adsorbent and adsorbate complexes are converted into solid phase by raising the temperature up to 65 ℃
which can be effectively separated by centrifugation. By further dialysis by water
the absorbent can be recovered and used for next utilization. During five adsorption and desorption cycles
the removal efficiency of supramolecular porous adsorbent was maintained
demonstrating excellent performance in sewage treatment. The strategy combined advantages of homogeneous and heterogeneous adsorption provides a new insight for water purification.
超分子自组装相转变多孔材料吸附
Supramolecular assemblyPhase transitionPorous materialsAdsorption
Jepson P D, Law R J. Science, 2016, 352(6292): 1388-1389. doi:10.1126/science.aaf9075http://dx.doi.org/10.1126/science.aaf9075
Zhang Quanxing(张全兴), Zhang Zhengpu(张政朴), Li Aimin(李爱民), Pan Bingcai(潘丙才), Zhang Xiaolin(张孝林). Acta Polymerica Sinica(高分子学报), 2018, (7): 814-828. doi:10.11777/j.issn1000-3304.2018.17317http://dx.doi.org/10.11777/j.issn1000-3304.2018.17317
Sun Q, Aguila B, Song Y, Ma S. Acc Chem Res, 2020, 53(4): 812-821. doi:10.1021/acs.accounts.0c00007http://dx.doi.org/10.1021/acs.accounts.0c00007
Wu Yuanpeng(武元鹏), Zhou Changliang(周昌亮), Xue Shishan(薛诗山), Li Chuan(李川), Lin Yuanhua(林元华), Zheng Zhaohui(郑朝晖), Ding Xiaobin(丁小斌). Acta Polymerica Sinica(高分子学报), 2017, (3): 516-523. doi:10.11777/j.issn1000-3304.2017.16142http://dx.doi.org/10.11777/j.issn1000-3304.2017.16142
Guo J, Tian H, He J. Chem Eng J, 2021, 408: 127336-127345. doi:10.1016/j.cej.2020.127336http://dx.doi.org/10.1016/j.cej.2020.127336
Yang H, Li H, Zhai J, Yu H. Chem Eng J, 2015, 277: 40-47. doi:10.1016/j.cej.2015.04.047http://dx.doi.org/10.1016/j.cej.2015.04.047
Wei Z, Ma X, Zhang Y, Guo Y, Wang W, Jiang Z Y. J Hazard Mater, 2022, 422: 126948-126962. doi:10.1016/j.jhazmat.2021.126948http://dx.doi.org/10.1016/j.jhazmat.2021.126948
Huang W, Li H, Yu L, Lin Y, Lei Y, Jin L, Yu H, He Y. J Hazard Mater, 2021, 420: 126539-126548. doi:10.1016/j.jhazmat.2021.126539http://dx.doi.org/10.1016/j.jhazmat.2021.126539
Bao S, Wu S, Huang L, Xu X, Xu R, Li Y, Liang Y, Yang M, Yoon D K, Lee M, Huang Z. ACS Appl Mater Interfaces, 2019, 11(34): 31220-31226. doi:10.1021/acsami.9b11286http://dx.doi.org/10.1021/acsami.9b11286
Ju Yuanyuan(鞠媛媛), Han Guangda(韩广达), Lu Yan(陆燕), Zhao Hanying(赵汉英). Acta Polymerica Sinica(高分子学报), 2018, (8): 1081-1088. doi:10.11777/j.issn1000-3304.2018.18009http://dx.doi.org/10.11777/j.issn1000-3304.2018.18009
Verdejo B, Gil-Ramirez G, Ballester P. J Am Chem Soc, 2009, 131(9): 3178-3179. doi:10.1021/ja900151uhttp://dx.doi.org/10.1021/ja900151u
Zhang J, Li Z, Gong W, Han X, Liu Y, Cui Y. Inorg Chem, 2016, 55(15): 7229-7232. doi:10.1021/acs.inorgchem.6b00894http://dx.doi.org/10.1021/acs.inorgchem.6b00894
Duan Bo(段博), Tu Hu(涂虎), Zhang Lina(张俐娜). Acta Polymerica Sinica(高分子学报), 2020, (1): 66-86. doi:10.11777/j.issn1000-3304.2020.19160http://dx.doi.org/10.11777/j.issn1000-3304.2020.19160
Chai K, Ji H. AIChE J, 2014, 60(8): 2962-2975. doi:10.1002/aic.14474http://dx.doi.org/10.1002/aic.14474
Dong G, Jacobs D L, Zang L, Wang C. Appl Catal B Environ, 2017, 218: 515-524. doi:10.1016/j.apcatb.2017.07.010http://dx.doi.org/10.1016/j.apcatb.2017.07.010
Zhang Xi(张希), Wang Liyan(王力彦), Xu Jiangfei(徐江飞), Chen Daoyong(陈道勇), Shi Linqi(史林启), Zhou Yongfeng(周永丰), Shen Zhihao(沈志豪). Acta Polymerica Sinica(高分子学报), 2019, (10): 973-987. doi:10.11777/j.issn1000-3304.2019.19no6http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
Jie K, Zhou Y, Yao Y, Huang F. Chem Soc Rev, 2015, 44(11): 3568-3587. doi:10.1039/c4cs00390jhttp://dx.doi.org/10.1039/c4cs00390j
Thota B N S, Urner L H, Haag R. Chem Rev, 2016, 116(4): 2079-2102. doi:10.1021/acs.chemrev.5b00417http://dx.doi.org/10.1021/acs.chemrev.5b00417
Xu H, Lu H, Zhang Q, Chen M, Shan Y, Xu Y T, Tong F, Qu D H. J Mater Chem C, 2022, 10, 2763-2774. doi:10.1039/d1tc03975jhttp://dx.doi.org/10.1039/d1tc03975j
Wang W Z, Gao C, Zhang Q, Ye X H, Qu D H. Chem Asian J, 2017, 12: 410-414. doi:10.1002/asia.201601733http://dx.doi.org/10.1002/asia.201601733
Liu X, Zhou X, Shen B, Kim Y, Wang H, Pan W, Kim J, Lee M. J Am Chem Soc, 2020, 142(4): 1904-1910. doi:10.1021/jacs.9b11004http://dx.doi.org/10.1021/jacs.9b11004
Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X. Adv Mater, 2016, 28(10): 1981-1987. doi:10.1002/adma.201505131http://dx.doi.org/10.1002/adma.201505131
Xiang Lue(向略), Zhu Wen(朱雯), Long Meilin(隆美林), Zhang Ke(张科), Chen Yongming(陈永明). Acta Polymerica Sinica(高分子学报), 2018, (7): 917-929. doi:10.11777/j.issn1000-3004.2018.18043http://dx.doi.org/10.11777/j.issn1000-3004.2018.18043
Dai Z, Li D, Ao Z, Wang S, An T. J Hazard Mater, 2021, 405: 124684-124695. doi:10.1016/j.jhazmat.2020.124684http://dx.doi.org/10.1016/j.jhazmat.2020.124684
Huang G B, Wang S H, Ke H, Yang L P, Jiang W. J Am Chem Soc, 2016, 138(44): 14550-14553. doi:10.1021/jacs.6b09472http://dx.doi.org/10.1021/jacs.6b09472
Gao Q, Xu J, Bu X H. Coord Chem Rev, 2019, 378: 17-31. doi:10.1016/j.ccr.2018.03.015http://dx.doi.org/10.1016/j.ccr.2018.03.015
Xie S, Wu S, Bao S, Wang Y, Zheng Y, Deng D, Huang L, Zhang L, Lee M, Huang Z. Adv Mater, 2018, 30(27): 1800683-1800687. doi:10.1002/adma.201800683http://dx.doi.org/10.1002/adma.201800683
Wang C, Wang Z, Zhang X. Acc Chem Res, 2012, 45(4): 608-618. doi:10.1021/ar200226dhttp://dx.doi.org/10.1021/ar200226d
Dong S, Zheng B, Yao Y, Han C, Yuan J, Antonietti M, Huang F. Adv Mater, 2013, 25(47): 6864-6867. doi:10.1002/adma.201303652http://dx.doi.org/10.1002/adma.201303652
Zhang Zilu(张子路), Xu Liang(徐亮), Zang Chunyu(臧春雨), Toyoji Kakuchi, Shen Xiande(沈贤德). Acta Polymerica Sinica(高分子学报), 2019, (4): 384-392. doi:10.11777/j.issn1000-3304.2018.18240http://dx.doi.org/10.11777/j.issn1000-3304.2018.18240
Ding Y, Yi Y, Xu H, Wang Z, Zhang X. Chem Commun, 2014, 50(20): 2585-2588. doi:10.1039/c3cc49753dhttp://dx.doi.org/10.1039/c3cc49753d
Wu S, Li Y, Xie S, Ma C, Lim J, Zhao J, Kim D S, Yang M, Yoon D K, Lee M, Kim S O, Huang Z. Angew Chem Int Ed, 2017, 56(38): 11511-11514. doi:10.1002/anie.201706373http://dx.doi.org/10.1002/anie.201706373
Huang Z, Kang S K, Banno M, Yamaguchi T, Lee D, Seok C, Yashima E, Lee M. Science, 2012, 337(6101): 1521-1526. doi:10.1126/science.1224741http://dx.doi.org/10.1126/science.1224741
0
Views
100
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution